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PREFACE 

The MOS Technology, Inc. MCS6500 Microcomputer System offering combines 

the best features of second generation families into a product line that is both 

a price and performance leader. A growing array of products and a unique micro- 

processor family provide the customer with answers to the complex design prob- 

lems confronting today's programmers and designers. 

Integrated circuit fabrication techniques have moved microprocessors to the 

forefront of complex, sophisticated components. The MCS6500 family benefits 

from an advanced but proven process technology; N-Channel, Silicon Gate, and De- 

pletion Loads are the key elements providing the high performance character- 

istics obtainable in the single supply 5-volt system usage of the MCS6500 family. 

The N-Channel, Silicon Gate technology is enhanced by use of Depletion Loads 

which provides greater speed, lower power and smaller chip size than previous 

processing approaches. Ion Implementation techniques are basic elements in pro- 

viding control and stability of all processing parameters necessary to achieve 

the electrical characteristics of the MCS6500 product line. These character- 

istics provide a price/performance combination which establishes the MCS6500 

family as the product offering best meeting the economic and technical demands 

of today's system designs. 

A word of explanation is in order regarding the MCS6500 product line, since 

the concept of "Microprocessor Family" is indeed unique to the industry. It is 

helpful to understand the basic product structure of the MCS6500 family. 

The MCS650X Series represents the Microprocessor Family. Within this 

family will exist a series of 8-bit devices offering a wide range of options and 

capabilities for the customer. For the single-application customer, a varied 

selection of devices is at his disposal in choosing the one that best meets his 

specific needs. The "Microprocessor Family" concept has an even greater impact 
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to the user who has a variety of applications, each of which can best be served 

by a specific member of the family. It is important to this user that all of 

the different microprocessors he selects maintain compatibility-—-both hardware 

{fvnm +h + dantnton (LTOmM tne Sstanapoine of deations) and software. The 

MCS650X product line is the first microprocessor family to achieve such a level 

of compatibility because it was indeed conceptualized as a totally software and 

hardware compatible family of microprocessors offering a range of performance 

options from which The MCS6501 and MCS6502 are the 

first two 40-pin members of the MCS650X family, each offering 65K bytes of 

addressable memory. The MCS6503, MCS6504 and MCS6505 are the first 28-pin 

versions with various options of addressing capability and control functions 

from which to choose. 

The MCS652X Series represents Peripheral Input/Output devices, the first 

being the MCS6520 which is a direct replacement for the Motorola MC6820 Periph- 

al Interface Adapter (PIA). Subsequent members of this series wiil include 

devices with expanded I/0 capabilities. 

The MCS653X Series represents combinational devices--those consisting of 

various tradeoffs in RAM, ROM, 1/0, and Timing. The first of these is the 

MCS6530 which contains 1K bytes of ROM, 64 bytes of RAM, an Interval Timer and 

16 I/0 lines. Subsequent products in this series will provide the customer with 

different combinations and new implementations of 1/0, Timing and Memory. 

The MCS654X Series represents Read Only Memories specifically tailored to 

meet the needs of large program storage required in many of the applications of 

the MCS6500 family of products. The first of these will be a 16K (2K x 8) ROM, 

the MCS6540. | 

All of the MCS6500 product lines outlined utilize the same fabrication 

techniques and meet identical electrical specifications. With this family of 

compatible products the designer of today has at his disposal the elements 

necessary to develop a system configured to meet the most demanding tasks. 

Complementing the MCS6500 family is a selection of Random Access Memories 

totally compatible with the microcomputer family. The first of these will be 

the MCS6102, a 2102 equivalent, and the MCS6111, a 2111 equivalent. 

To allow for minimum I/0 cost and maximum user flexibility, all of the 

MCS6500 products are compatible with the M6800 bus structure. 
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Chapter 1 of this manual introduces the reader to the MCS6500 Microcomputer 

System. It includes an introduction to terminology, an explanation of system 

components of a general microcomputer system, and then discusses the components 

of the MCS6500 Product Family. 

Chapter 2 is applications-oriented, with a discussion of system configura- 

tion, the I/0 port, handshaking and specific examples on interrupt prioritizing, 

interfacing with peripherals, direct memory addressing techniques, and control 

of memories in the system. 

Chapter 3 is directed at the important task of bringing up a system. It 

takes the reader through a step-by-step procedure in analyzing, statically and 

dynamically, the basic elements of the system to assist the user in a smooth 

transition from a conceptual system to an operational one. 
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CHAPTER 1 

THE MCS6500 MICROCOMPUTER SYSTE) 

The past several years have seen the development of an exciting new concept 

in electrical design. Conventional system design is rapidly being revolution- 

ized by the large-scale, single-chip programmable microprocessor. The micro- 

‘computer started out as a relatively simple, difficult-to-use programmable 

device capable of handling simple control or computational problems. However, 

it has since matured into a powerful, inexpensive, easy-to-use device capable 

of controlling all but the most complex of systems. 

Three primary attributes of microprocessor-based systems are bringing 

about this revolution. They are: 

1. Microprocessors allow a significant reduction in overall systems cost 

for products currently in production. Re-designing their products 

around the microprocessor is permitting many manufacturers to develop 

or maintain a price advantage over competitors. 

2. The reduction in cost of microcomputer systems is opening up vast new 

markets for microprocessors. A great number of systems which were 

simply impossible or were at best impractical, are being designed and 

marketed today using the modern, low-cost microprocessors. 

3. At the same time the price of microprocessors is dropping, the cap- 

ability is rapidly expanding. This also allows them to be designed 

into more systems than ever before. 

Anyone contemplating a new design or trying to reduce cost in an existing 

design must ask himself if a microprocessor will solve his problem. 

The success of the microprocessor is based on the fact that it allows the 

design engineer and programmer to apply their expertise in solving a multitude 

of design problems using cost effective ICs. A small number of large inte- 

grated circuits can be configured to solve design problems from the simplest to 

the most complex. 



If the same integrated circuits are used to solve a multitude of unique 

designs, the first question one must ask is, ''What makes them unique?" The 

answer is: Programming. Although many different designs may share common hard- 

ware, each has its own unique program. This brings us to another very important 

characteristic of microcomputers. The integrated circuit which makes each sys- 

tem unique is the "Read-Only Memory" (ROM) which stores the system program. It 

is relatively easy for the integrated circuit manufacturer to establish the 

particular pattern which uniquely defines the data in a ROM. As a result, the 

typical charge for "designing" a ROM is generally less than 10% of the cost of 

designing a totally custom logic chip. Further, the user benefits from high 

volume standard product which is still unique for his own application due to the 

"customization" of one element of his system. 



1.0 DESIGNING WITH MICROCOMPUTER SYSTEMS 

It will probably surprise many designers who are approaching the subject 

of microcomputer design for the first time when they discover that designing a 

system around a microprocessor is much the same as designing around conventional 

logic. The total approach is the same; the process differs only in the imple- 

mentation of each step. 

A brief examination of the system design process will help to put micro- 

computer design in perspective and will aiso assist in clarifying the purpose 

of this manual. One can expect to perform the following steps in designing a 

system: 

1. Define the requirements of the system. What functions should it 

perform? 

. Define basic system components. 2 

3. Complete design details. 

4 

5. Finalize design and begin production. 

Step 1 is true for any system and, in general, for any product. Step 2 is 

the first point of departure for microprocessor based designs. It is at this 

time that the designer must consider the possibility of using a microprocessor 

in his system. For the very cost-sensitive application he must look very care- 

fully at total systems cost. Can a microprocessor do the iob within the price 

constraints imposed? At the other end of the design spectrum, the system de- 

signer must evaluate the capability of microprocessors to assure himself that 

the available devices can in fact perform the required function. Will a micro- 

processor be fast enough to run the system? Will it take more than one proces- 

sor? 

The purpose of this manual is to teach the designer how to effectively con- 

figure a microprocessor-based system and to evaluate the performance of the sys- 

tem. After this step, the design will be completed by development of the system 

program. Implementation of the system program is discussed in the Programming 

Manual. 



1.1 INTRODUCTION TO MICROCOMPUTER SYSTEMS 

1.1.1 Organization of a Microcomputer System 

Figure 1.1 illustrates the basic organization of a microcomputer 

system. It is important that the designer understand the operation of each 

component as well as the operation of each data path in the system. Each 

of these is discussed separately below. In addition, the following discus- 

sion describes the operation of the overall system and the use of the vari- 

ous signal paths. 

+ 

1.1.2 Basic Operation 

The microcomputer is a system which can be characterized as very 

simple in its detail and very complex in its overall operation. It 

carries out rather complex tasks by performing a large number of simple 

operations. Control of the system is primarily the responsibility of the 

processor. By putting out addresses to program memory, it controls the 

sequence of operations performed and by interpreting and executing the 

instructions which it receives from the program memory, it controls the 

actual operations carried out by the system. The processor is by far the 

most complex device in the system. For this reason, it is important to 

overall system cost that this part stay the same for many different appli- 

cations. In this way, the relatively high development cost can be shared 

by thousands of users. In addition, those thousands of users can all bene- 

fit from the economics of large-scale production. 

The processor causes the system to perform the desired operations by 

reading the first instruction in the program, and performing the very simple 

task dictated by the specific pattern of bits in this instruction (referred 

to as "executing" that instruction). It then goes on to the next instruc- 

tion in the program and executes it. This simple operation of fetching an 

instruction and executing it is performed over and over, each time on the 

next instruction in sequence. In this way the program instructs the pro- 

cessor to bring about the desired system operation. 

1.1.3 Addressing Terms and Concepts 

Before entering into a detailed discussion of the system operation, 

it would be useful to detine a tew terms and to introduce a few concepts 

concerning addressing. This should assist in an understanding of the 

detailed discussions which follow. 

~4- 
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1.1.3.1 Bit 

The term "Bit'’ is a general term referring to anything that can be 

assigned to binary value, i.e., anything that can be given a value of 0 or 

1. Thus, an eight-bit data bus is a set of 8 lines which can be assigned a 

value of logic 0 or logic 1. On these lines, the logic values are repre- 

sented by two different voltages or currents. Similarly, a 16-bit binary 

display can be built with 16 individual lamps. The logic 1 is represented 

by the lamp being on. 

In this text, reference is made to an 8-bit data bus, a 16-bit 

address bus, 4 bits of data, 8-bit registers, etc. In all cases, defini- 

tion of a bit remains the same. 

1.1.3.2 Address Space 

The concept of an address space is very useful in understanding 

microcomputer systems. The term "address space" refers to the total set of 

addresses which the microprocessor can generate. For example, if a pro- 

cessor had only 4 address lines, it could generate the addresses 0 - 15 

(binary 0000 to binary 1111). This would not be adequate for any microcom- 

puter operation and, consequently, the typical processor has between 12 and 

16 address lines. Since each line can assume a value of 0 or 1, these de- 

vices can usually address from 4,096 to 65,536 separate addresses. Figure 

1.2 contains a pictorial representation of the address space available in 

a typical 8-bit microcomputer with sixteen address lines. In addition to 

the general address space, this figure introduces the PAGE concept dis- 

cussed below. 

1.1.3.3 The Address Page 

The concept of a PAGE in memory is very important in 8-bit micro- 

computer systems. The internal organization of an 8-bit processor is 

around 8-bit registers, 8-bit parallel data paths, etc. Most arithmetic 

operations, logic operations, etc. take place on 8 bits of data at a time. 

Likewise, the 16-bit counter which determines which instruction is being 

executed is actually divided into two 8-bit busses. One contains bits 0 - 7 

(low order address bits) and the other contains bits 8 to 15 (high order 

address bits). With this in mind, one can think of the address space shown 

in Figure 1.2 as consisting of 256 blocks, each consisting of 256 specific 

amtt 
address locations. Each of these blocks is referred to as a "PAGE 
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of memory. The high order 8 bits of the address (ADH) therefore indicates 

in which page the address is located, and the low order 8 bits (ADL) indi- 

cates a specific address on that page. 

The first page in memory (ADH = 00) is referred to as page zero. 

The next higher order page (ADH = 01) is referred to as page 1, etc. 

1.1.4 System Components 

The block diagram in Figure 1.1 shows the basic components which 

comprise all microcomputer systems. Each of these blocks may consist of 

one or more integrated circuits and, in fact, the functions may be com- 

bined into single chips. However, the basic operation of each remains the 

same. 

1.1.4.1 Clock Generator 

The clock generator produces a continuous waveform which is 

normally used to control all signal transitions within the system. t acts 

as the "heart" of the system. In the typical microcomputer system the 

address bus will change during one half of the clock cycle and the data 

will be transferred during the second half. In addition to interpreting 

the address, data and control lines, the processor and support chips must 

also examine the system clock to know when to put out data or when to latch 

in data generated by another device. 

1.1.4.2 Program Memory 

The program memory stores the sequence of instructions which com- 

prises the system program. Like any memory, this unit puts a pattern of 

1's and 0's on the data bus in response to the address on the address bus 

input. Each unique address selects a set of 8 binary bits and places this 

data on the data bus. Note that it does not matter where the address is 

generated or where the data is used; the memory simply obeys the rule that, 

given an address, it will put the corresponding 8 bits of data on the data 

bus. 

A unique characteristic of most microprocessor-based systems is 

that the program is usually stored in "READ-ONLY" memories. The data is 

stored in a fixed pattern of bits in the memory. Figure 1.3 shows a sec- 
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Portion of Read Only Memory Matrix 

FIGURE 1.3 

Since the data is stored in the physical configuration of the device, the 

data will not be lost when power is disconnected from the chip. In addi- 

tion, it is only necessary to insert the device into its socket to pro- 

vide the system program. The term "Read-Only Memory" refers to the fact 

that, in system operation, it is impossible for the processor to cause data 

to be stored in the device. The processor can only "READ" the data stored 

in the device during the manufacturing process. "READING" a memory in- 

volves the simple process of supplying an address to the device to obtain 

the corresponding 8 bits of data on the data bus. 

1.1.4.3 Data Memory 

For temporary storage of input data, the results of arithmetic 

operations, etc., the microcomputer uses a Read/Write Memory, commonly re- 

ferred to as a RAM (Random Access Memory). The processor can store data 

in the RAM (called "WRITING" the RAM), or it can read back the data it has 

stored. As in the ROM, each address corresponds to eight memory cells. 

However, in a RAM the data must be placed into the memory by the processor 

and is stored in cross-coupled latches. Turning off the power to the chip 

will cause the loss of all data stored there. The data is said to be 



"“vZolatile." Data in a ROM is not lost when power is disconnected from the 

device; the data is therefore referred to as "non-volatile." 

"WRITING data into a RAM takes place when the Write-Enable signal 

goes to the write state. At this time the data on the data bus will be 

stored into the eight memory cells corresponding to the address on the ad- 

dress bus. The processor can READ this same data by supplying the proper 

address and keeping the Write-Enable line in the Read state. 

1.1.4.4 Input/Output Devices 

The Input/Output Devices are the circuits which interface the 

printer, keyboard, displays, etc. to the processor. These allow the pro- 

cessor to read data from the keyboard, to test the state of sensors and 

switches, and to display or to print the results of internal operations. 

No matter where data is generated, it must be in the form of 1's 

and O's before the processor can work with it. Likewise, actions to be 

initiated by the processor must be triggered by 1's and 0's transferred by 

the processor to a set of output lines. 

The transfer of data from the processor to an output device is 

usually accomplished by "WRITING" the data out in much the same manner as 

the processor writes data into RAM. Each set of 8 input or output lines 

(referred to as "PORT") is given an address and the processor simply writes 

data to that address. For each "1" written out to the peripheral port an 

output is set high and for each "0,"" the corresponding output is set low. 

Although the basic concept of peripheral control is simple, the 

actual implementation of these interfaces can involve many sophisticated 

techniques designed to allow the processor to maximize its ability to con- 

trol peripherals and perform internal operations concurrently. These tech- 

niques are discussed in detail in Chapter 2 of this manual. 

1.1.4.5 The Microprocessor 

At first glance it may seem strange to discuss the support chips 

in the microprocessor-based system before mentioning the processor. How- 

ever, this approach is necessitated by the fact that most of the inputs and 

outputs on the processor are aimed at properly controlling the support chips 

and peripheral devices discussed above. 

The address bus, the bi-directional data bus and the Write-Enable 

iine allow the processor to exercise direct control over the rest of the 

system. The address bus puts out addresses to control the source or 
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destination of data transfers. These addresses are derived from various 

sources within the processor. During the fetch of instructions from pro- 

gram memory, the addresses are usually derived from a counter which con- 

Fh trols execution of sequential instructions. Addresses for data transfers 

between the processor and RAM are usually derived directly from the program 

or are calculated from the data in the program and data in internal regis- 

ters. 

The bi-directional data bus serves as a path for transferring data 

into and out of the processors. The direction of the data transfer is de- 

termined by the Write-Enable line. 

Another special function found in modern microcomputer systems is 

the interrupt. This function allows the peripheral devices to directly 

affect the operation of the processor. When the interrupt signal is gener- 

ated, the processor usually completes its current instruction and then, 

under program control, will respond to the interrupt. The importance of 

this function is that it allows the processor to execute the system program 

without requiring the system program to monitor the status of the peripheral 

device. The software which handles the operation of each peripheral will 

be executed only when required. 

-ll- 



1.2. INTRODUCTION TO THE MCS650X MICROPROCESSOR FAMILY 

The initial MOS Technology, Inc. microprocessor offering consists of the 

MCS6501, which is MC6800 compatible; the MCS6502, which has clock drivers on- 

chip; and three 28-pin processors, the MCS6503, MCS6504, and MCS6505. All of 

these devices are aimed at a specific range of applications. Therefore, it is 

important to develop an understanding of the capabilities of each and the dif- 

ferences between them. 

The MCS6501 has application in existing M6800 systems where conversion to 

the MOS Technology, Inc. processor is to be performed. This processor requires 

the full high-level two-phase clocks of the M6800 system. The MCS6502 is ex- 

pected to find application in aii new designs which require a full 16-bit ad- 

dress bus. However. in the small cost-sensitive system, the 28-pin processors 

can represent a savings in both processor cost and printed circuit board area. 

The MCS6503, MCS6504, and MCS6505 will find application in all new designs where 

the system will operate within the addressing limits. 

1.2.1 The MCS6501 

The MCS6501 is the first member of the microprocessor family to be 

introduced. It is designed to be pin compatible with the M6800 and there- 

fore conversion from the MC6800 to the MOS Technology, Inc. MCS6501 re- 

quires only that the system be reprogrammed. This allows the M6800 user 

to take full advantage of the software power (addressing modes, etc.) of 

the MCS650X processor family. 

Although the conversion process is fairly simple, it is important to 

keep in mind the differences between the MC6800 and the MCS6501. The pins 

on the MCS6501 all do the same general function as those on the MC6800 but 

the function performed may differ somewhat in detail. Figure 1.4 contains 

a detailed, pin-for-pin comparison of these two processors. A thorough 

understanding of this table, along with an understanding of the MCS650X 

software will allow the system designer to perform the conversion with very 

little difficulty. The MCS6501 provides a full 16-bit address bus, 8-bit 

data bus and two interrupts. 
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1.2.2 The MCS6502 

The second member of the processor family is a 40-pin device which 

provides all the features of the MCS6501, along with an "on-the-chip" oscil- 

lator and clock drivers. This device should be used in all new designs 

which require the capability of the 40-pin processors. The clock drivers 

can be driven with a single TTL level square wave or with the internal 

oscillator. The frequency of operation of the internal oscillator can be 

set by attaching an R-C combination to the chip and, if the clock stability 

is required, by attaching a crystal between the oscillator and ground. 

This feature totally eliminates the problems encountered in generating 

MC6800 type clock signals. | 

As in the MCS6501, the MCS6502 provides a full 16-bit address bus, 

8-bit bi-directional data bus and two interrupts. In addition, the MCS6502 

provides a sync signal which indicates those cycles in which the processor 

is fetching an operation code from program memory. 

1.2.3 The MCS6503, MCS6504 and MCS6505 

Three 28-pin versions of the processor are available. These three 

differ in the number of address lines and the number of interrupts provided. 

Having all three options available allows the designer to tailor his pro- 

cessor to his particular application. 

The MCS6504 provides a total of 13 address pins and can, therefore, 

address a full 8K bytes in its memory space. However, this part provides 

only one interrupt request input, IRQ. The non-maskable interrupt (NMI) is 

not included in the pinouts of this device. 

The MCS6503 and MCS6505 provide one less address line. In the 

MCS6503, this address line is replaced with a second interrupt input, NMI. 

In the MCS6505, this address line is replaced by the RDY signal. All other 

functions on these processors are the same. The details of each of these 

pins are discussed in the following sections. 

The operation of the various busses, control signals, etc. is ex- 

actly the same on all MCS650X products with all processors obeying the sys- 

tem specifications discussed in Section 1.3 of this manual. 
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1.3 MCS6500 SYSTEM CONCEPTS 

1.3.1 Bus Structure 

The MCS6500 microcomputer system is organized around two primary 

busses. Each bus consists of a set of paraliel paths which can be used to 

transfer binary information between the devices in a system. The first 

bus, known as the ADDRESS BUS, is used to transfer the address generated by 

the processor to the address inputs of the memory and peripheral interface 

devices. The processor is the only source of addresses in a normai system, 

so this bus is referred to as "unidirectional." The address bus consists 

of 16 lines on the MCS6501 and MCS6502. This allows the processor to 

access (READ or WRITE) up to a total of 65,536 memory words, registers, etc. 

In the MCS6503, MCS6504, and MCS6505, the address bus contains fewer lines; 

therefore, they operate with a smaller "address space." This is discussed 

in detail in Section 1.1.3. 

The data bus in the MCS6500 microcomputer system consists of an 8-bit 

bi-directional data path. These lines transfer data from the processor to 

the selected memory word, etc. during a WRITE operation and from memory 

into the processor during a READ operation. All data and all instructions 

are transmitted on the data bus. 

The direction of the data transfers is controlled by the READ/WRITE 

(R/W) line on the processor. This line performs the Write Enable function 

described in Section 1.1.4.3. As long as the R/W line is high (> 2.4V DC), 

all data transfers will take place from memory to the processor (READ opera- 

tion). This line will go low only when the processor is going to WRITE data 

out to memory. 

As in most microcomputer systems, the timing of all data transfers 

is controlled by the system clock. The clock itself is actually two non- 

overlapping square waves. This two-phase clock system can best be thought 

of as two alternating positive-going pulses. This text will refer to the 

clocks as Phase One and Phase Two. A Phase One clock pulse is the positive 

pulse during which the address lines change and a Phase Two clock pulse is 

the positive pulse during which the data is transferred. The timing of the 

signals on the Address Bus, Data Bus, and R/W line are shown in Figures 1.5 

through 1.8. All signal transitions are specified with respect to the 

Phase One and Phase Two clock signals. 
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In particular, the address lines and the R/W line will stabilize during 

Phase One, and all data transfers will take place during Phase Two. 

The specific timing specifications for operating at a 1 MHz clock 

rate are also given in Figure 1.5. Note that the sequence of operations 

will be the same for ail processors. However, these timing specifications 

will change for devices which are specified to operate faster than 1.0 MHz. 

The address is guaranteed to be stable 300 nanoseconds after the leading 

edge of Phase One, and the data must be stable 100 nanoseconds before the 

trailing edge of Phase Two. At 1.0 MHz operation, this allows the memory 

devices approximately 575 ns to make data available on the data bus. Al- 

though there are many factors which determine the actual data and address 

generated within the system, it is important to keep in mind that the 

basic operation shown in Figures 1.6, 1.7 and 1.8 does not change. These 

figures specify the system bus discipline which applies to all MOS Technol- 

ogy, Inc. processors and support chips. 

Through the generation of processor interrupt signals, the peri- 

pheral devices (printers, keyboards, etc.) can request service from the 

processor. Although this technique is relatively simple in concept, the 

proper generation and control of interrupts is one of the most important 

problems which the designer will face. Total system capability can be 

greatly expanded if the processor is required to execute the peripheral 

software only when it is absolutely necessary. This is the goal of a well- 

planned interrupt structure. The interrupt structure is very much a sys- 

tems sophistication problem since it is the entire system which must pro- 

perly respond to the interrupt inputs. In fact, the actual signals to 

which the system must respond are usually applied to the inputs of a peri-~ 

pheral interface device. In this device, the interrupts are enabled, dis- 

abled and latched until the interrupt is processed. The peripheral inter- 

face device generates signals which meet the requirements of the processor 

interrupt inputs. 

There are two interrupt input lines to the microprocessor, IRQ 

(Interrupt Request) and NMI (Non-Maskable Interrupt). 

ué Leguiremenis of the two interrupt inputs ditter, they will 

be discussed separately below. The response of the processor to these in- 

puts is very similar, however, after the interrupt is recognized. For this 
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reason, the internal operation of the processor during interrupt servicing 

is discussed in the detailed analysis of the processor chip. Instead, this 

section will concentrate on the system level considerations which are re- 

quired to assure proper operation of the interrupt structure. 

1.3.2.1 Applications for Interrupts 

One of the most important tasks facing the microcomputer system 

designer is the determination of those signals which will cause processor 

interrupts and those operations which will take place in response to these 

interrupts. A detailed discussion of these considerations is included in 

Chapter 2 of the manual; however, a few examples of interrupt-driven opera- 

tions will be presented here to help the designer develop an understanding 

for why this technique is used extensively in microcomputer systems. 

Example 1--A Fully-Decoded Keyboard 

The problem of data entry is solved in many systems by a key- 

board. In small systems, the interpretation of the binary code associated 

with each key can be determined by the processor. However, in large data 

terminals, the keyboard usually includes an encoder which generates the 

unique code corresponding to each key. When a key is closed, the corre- 

sponding code is placed on the output pins and a strobe signal is generated 

to indicate that a key has been pressed. 

The keyboard represents a perfect candidate for interrupt- 

driven operation. The interrupts occur relatively infrequently and the 

operation to be performed is relatively simple. The keyboard strobe line 

is connected directly to an interrupt input on a peripheral interface de- 

vice. Each time a strobe signal is generated, an interrupt occurs, the 

processor reads the data on the peripheral port into memory, analyzes this 

data and then returns to the program that was in process. If no keys are 

pressed, the processor spends no time at all in servicing the keyboard. 

Without the interrupts, the processor would have to read the 

keyboard data into memory periodically in order to detect an active key. 

This operation would be performed about every fifty to one hundred milli- 

seconds. In addition to detecting an active key, the processor must make 

sure that each separate activation of a key is detected once and only once. 

5 and 1.3.2.6 This software is much 

more complex than the simple interrupt routine. Another drawback of non- 

interrupt processing is that the processor is required to spend a periodic 
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portion of its time on the keyboard. In many systems, this is not a prob- 

lem, but in large terminals, etc., the time spent checking for keyboard 

strobes could be better spent in other operations. The designer must, 

therefore, ask himself if the system under development is such that the 

processor can perform the keyboard strobe checking function while still 

completing its other tasks. 

Example 2--A Scanned Display 

Although time is a major factor in determining the necessity of 

interrupts, the interrupt technique can also be extremely useful when per- 

forming parallel operations. A prime example of this can be found in a 

system which contains a digital display and/or printer. 

A digital display is usually "scanned" such that each digit is 

driven for a short period of time in sequence. The entire display is 

scanned at a rate which the eye cannot detect. However, it can be noted 

here that the display requires scan-related attention from the processor 

at fixed intervals. It is very difficult for the processor to calculate 

repetitive time intervals while it is performing its normal system program 

routines. The processor would much prefer to run the system program with- 

out consideration for the display time intervals, only executing the display 

software when it is required. 

A solution to the above problem is the generation of processor 

interrupts at fixed intervals using an external counter or clock. Each 

time an interrupt occurs, the data for the next digit in the display is 

placed on an output port. The processor then returns to the program it had 

been executing. 

Both of the operations described above represent solutions to 

system problems. Events which happen very infrequently and events which 

must be performed in paraileil with other events or in parallel with the 

main system program should be seriously considered as candidates for inter- 

rupts. Additional considerations are described in Chapter 2 of this manual; 

however, it is important to note here that the typical system may have 

several sources of interrupts, each with its own timing and each with its 

own set of operations which must be performed in response to the interrupts. 
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1.3.2.2 Interrupt Prioritizing 

After a careful analysis of the total system and a determination 

of all the sources of interrupts, the designer must ask himself, "What hap- 

pens if more than one interrupt source requires attention at one time?" A 

priority level must be established between the various interrupt sources. 

Which ones must be taken care of within a very short period? Which ones 

can be put off for a while? This prioritizing and the technique for select- 

ing among several concurrent interrupts is very important to the system 

operation and should be established early in the system development process. 

The MCS650X-based system can employ several hardware methods of 

determining the highest priority active interrupt. These usually involve 

using a special "priority encoder" which allows the processor to go di- 

rectly to the software which services the highest priority interrupt. 

After this is complete, it will go to the next higher priority and execute 

that software. However, the MCS650X family provides a much less expensive 

method of interrupt prioritizing. This is the "polled" interrupt. With 

this technique, each time an active interrupt source is detected, the pro- 

cessor executes a "polled" interrupt program that interrogates the highest 

priority interrupt, then the next highest and so on until an active inter- 

rupt is located. The program services that interrupt and returns to the 

"polled" interrupt program and continues to interrogate the next highest 

priority interrupt until all have been interrogated or clears the interrupt 

disable to allow nested interrupts. The "polled" interrupt program is al- 

ways executed when an interrupt occurs so that all interrupts that occur 

concurrently will be serviced in order of priority level. 

Several hardware techniques for prioritizing interrupts are dis- 

cussed in Chapter 2 of this manual. The next section, however, describes 

the system interconnect which allows use of the simple "polled" interrupt. 

1.3.2.3 System Interconnect for Interrupts 

In the simple "polled" interrupt technique for prioritizing inter- 

rupts, the interrupt software actually determines the highest priority 

active interrupt. The IRQ or NMI interrupt request signals simply cause 

the processor to jump to the polling software. 

For this feason, it is pussibie tv "OR" ihe various inierrupt 

signals together to form the signal for the processor. Any active inter- 

rupt source will then cause the processor to do the interrupt polling and 
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servicing operation. Provision for generation of this OR function is pro- 

vided in the MCS6500 family peripheral interface devices. Since these 

peripheral adapters perform many of the enabling and latching functions 

necessary for proper interrupt servicing, the peripheral adaptor interrupt 

output then provides the actual signal which interrupts the processor. 

These interrupt outputs can be "WIRE-OR'd" by connecting them all together 

and then connecting this single line to the processor. This input should 

then be pulled to +5V with a resistor. Any one of the interrupt outputs 

on the peripheral adaptors can then pull this interrupt low. This simple 

configuration is shown in Figure 1.9. 

1.3.2.4 Interrupt Servicing 

Although a great deal has been said previously about the process 

of establishing interrupts and determining just what happens in response to 

an interrupt, it would be useful to detail the sequence which takes place 
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t request input. This interrupt will be recognized after the pro- 

cessor completes the instruction which it is currently executing. The next 

step is to store enough of the contents of the internal processor registers 

to assure that the processor can resume execution of the program which was 

interrupted. In particular, the Program Counter and the Processor Status 

Register are stored in a series of memory locations specified by another 

internal register, the Stack Pointer. As discussed in Chapter 9 of the 

Programming Manual, saving the contents of the Program Counter and Proces- 

sor Status register uniquely defines, in memory, the state of the micro- 

processor at the time the interrupt occurred. The processor then goes to 

two fixed locations in memory to determine the address low and address high 

of the interrupt software. 

The operation to this point is automatic and is determined by the 

internal processor logic. After the processor has properly set the address 

bus, execution of the interrupt program commences. Everything which occurs 

subsequently is determined by the system software. 

The totai interrupt software described above will consist of a com- 

plex combination of polling and interrupt servicing routines. However, unless 
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a hardware prioritizing scheme is used, the actual system interconnections 

will not become any more complex than that shown in Figure 1.9. 

——ee 

1.3.2.5 Interrupt Request (IRQ) 

As stated in Section 1.3.2, the two interrupt lines for the micro- 

processor are IRQ and NMI. The requirements for proper operation of the 

maskable Interrupt Request input (IRQ) are more stringent than for the 

second interrupt input, NMI. This is due primarily to the fact that NMI 

L 211 is edge-sensitive. With the IRQ input, the processor will be interrupted 

any time the signal on IRQ is GND (< 0.4V) and the internal Interrupt Dis- 

able flag is cleared. The Interrupt Disable flag (1) is a single bit in 

the internal Processor Status Register. The details of this register are 

described in Section 3.2 of the Programming Manual. 

In the processing of interrupt request from the IRQ input, the I 

flag is extremely important. This is the eiement which assures that an 

interrupt will be recognized and serviced only once for each request and 

only when an interrupt is desired. This is described in detail below. 

Figure 1.10 details the sequence of operations which should take 

piace during the servicing of an IRQ interrupt. A positive or negative 

transition of the signal from the peripheral device (printer, keyboard, 

etc.) is detected on the edge-sensitive inputs to the peripheral interface 

device. if the interrupt is enabled within the peripheral interface de- 

vice, the interrupt request output (IRQ) on this chip will go low. The 

interrupt condition is latched within the peripheral interface device to 

allow sufficient time for the processor to poll the interrupt sources, 

assuring that the interrupt signal will not be cleared before the polling 

can be completed. This latch is reset by the processor as it executes the 

software associated with that interrupt. Details of this operation are 

described in Section 1.4.1.2.10 

The Interrupt Disable flag (I) is set automatically when the pro- 

cessor recognizes an interrupt. This assures that this same interrupt will 

not be recognized again. Resetting this flag can be performed manually 

with an instruction in the program or automatically with a "Return from 

Interrupt" instruction. It is very important that "I" not be cleared before 

the interrupt input is reset. Performing the "Clear I" instruction too 

early in the program can cause this same interrupt to be recognized again. 
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The processor will then proceed to service this as if it were a new inter- 

rupt. 

1.3.2.6 Non-Maskable Interrupt (NMI) 

1 wr r ~~ . 4 [er “ye PAA MN AT the processor is edge-sensitive. To cause an 
4 

Oo k The NMI input t 

interrupt to occur, there must be a negative transition of the signal on 

the NMI input. This negative transition will cause a single interrupt to 

occur. After servicing the interrupt, the processor will ignore this input 

until the NMI signal goes high (> +2.4V) and then back to ground. 

The response to an NMI interrupt signal cannot be disabled within 

the processor. After the processor completes the instruction being exe- 

cuted, it will recognize the interrupt and will proceed to service the 

interrupt as described in the previous section. The proper discipline to 

employ in all interrupts is for the interrupt signal to be latched until 

ct he processor completes servicing the interrupt. This method of operation 

is assured if ail the interrupts are connected to the interrupt inputs of 

the peripheral interface devices in the family. 

Processing of multiple interrupts in a polled interrupt structure 

requires that ail of the interrupts be polled before executing a ‘Return 

from Interrupt" instruction. This is necessitated by the "WIRE-OR" tech- 

nique for combining the interrupts, since no knowledge exists of which line 

went to ground. If one of the interrupts is left unserviced, it will hold 

the NMI signal to ground, disabling the interrupts from all other sources 

since it is necessary for the NMI signal to go high (> 2.4V) and back low 

again for an interrupt to occur. This is not true for the TRO input since 

1 this latch is level-sensitive. Performing a "Return from Interrupt" before 

all IRQ interrupt sources are serviced will simply cause another IRQ inter- 

rupt to occur, 

1.3.3 System Reset 

One of the basic system control functions is the system RESET signal. 

Whether this signal is generated automatically by external power-on circuitry 

or manually from a push-button switch, the system components must obey a 

fixed set of rules to assure proper system operation. This is particularly 

true for the peripheral interface devices. 
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In the MCS650X-based systems, an assumption is made that RESET pins 

on all peripheral interface devices and on the processor will be held low 

during power-on until the supply voltages and the clocks have stabilized. 

This procedure assures that the peripheral pins will remain in a known 

state until the entire system is initialized and the processor is ready to 

assume control of the output lines, i.e., is ready to run the system pro- 

gram. 

It should be mentioned that in the entire set of microcomputer 

chips, the contents of latches, registers, etc. is totally random after 

power is applied. On the peripheral output pins, random data can be 

disastrous. The only way to force these lines to a known condition is to 

apply the RESET signal. The designer can then make sure that the known 

condition will not cause spurious operations in the peripheral devices. 

The effect of RESET on the peripheral chips is discussed in the analysis 

of each chip. 

In the processor, the single register which must be placed 

in a known state is the program counter. This is the register which se- 

lects the instructions to be executed. The RESET input causes the program 

counter to go to the first instruction in the system program. The specific 

details of this operation are discussed in Section 1.4.1.2.11. 

There is one other very important function performed by the RESET 

input on the peripheral interface devices. Although the recognition of the 

processor interrupt signals is automatic and does not depend on software, 

the sequence of operations performed by the processor to totally service an 

interrupt is determined by the program. Until the various internal regis- 

ters in the processor have been initialized, the processor is not ready to 

respond properly to any external interrupts. For this reason, it is im- 

portant that the system RESET disable all external interrupt signals until 

they are enabled by the processor. The programmer can then make sure that 

the system has been properly initialized before the interrupts are enabled. 
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1.4 THE MICROPROCESSORS 

1.4.1 The MCS6501 

1.4.1.1 Introduction 

The members of the MCS650X microprocessor family contain very 

similar internal architectures. A block diagram of this architecture is 

shown in Figure 1.11. This section begins with an analysis of this block 

diagram, discussing the function of the various registers, data paths, etc. 

A detailed discussion of the operation of the various pins on the chip fol- 

lows. 

The internal organization of the processor can be split into two 

sections. In general, the instructions obtained from program memory are 

executed by implementing a series of data transfers in one section of 

the chip (register section). The control lines which actually cause the 

data transfers to take place are generated in the other section (control 

section). Instructions enter the processor on the data bus, are latched 

into the instruction register, and are then decoded along with timing sig- 

nals to generate the register control signals. 

The timing control unit keeps track of the specific cycle being 

executed. This unit is set to "TO" for each instruction fetch cycle and 

is advanced at the beginning of each Phase One clock pulse. Each instruc- 

tion starts in TO and goes to Tl, T2, T3, etc. for as many cycles as are 

required to complete execution of the instruction. Each data transfer, 

etc., which takes place in the register section is caused by decoding the 

contents of both the instruction register and the timing counter. 

Additional control lines which affect the execution of the instruc- 

tions are derived from the Interrupt logic and from the Processor Status 

register. The Interrupt logic controls the processor interface to the 

interrupt inputs to assure proper timing, enabling, sequencing, etc. which 

the processor recognizes and services. 

The Processor Status register contains a set of latches which 

serve to control certain aspects of the processor operation, to indicate 

the results of processor arithmetic and logic operations, and to indicate 

the status of data either generated by the processor or transferred into 

the processor from outside. 

Since the real work of the processor is carried on in the register 

section of the chip, a detailed study will be made of this section. The 

components are: 
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* Data Bus Buffers 

* Input Data Latch (DL) 

* Program Counter (PCL, PCH) 

Accumulator (A) 

* Arithmetic Logic Unit (ALU) 

* Stack Pointer (S) 

* Index Registers (X, Y) 

* Address Bus Latches (ABL, ABH) 

* Processor Status Register (P) 

At 1 MHz, the data which comes into the processor from the program 

memory, the data memory, or from peripheral devices, appears on the data 

bus during the last 100 nanoseconds of Phase Two. No attempt is made to 

actually operate on the data during this short period. Instead, it is 

simply transferred into the input data latch for use during the next cycle. 

The data latch serves to trap the data on the data bus during each Phase 

Two pulse. It can then be transferred onto one of the internal busses and 

from there into one of the internal registers. For example, data being 

transferred from memory into the accumulator (A) will be placed on the in- 

ternal data bus and will then be transferred from the internal data bus 

into the accumulator. If an arithmetic or logic operation is to be per- 

formed using the data from memory and the contents of the accumulator, data 

in the input data latch will be transferred onto the internal data bus as 

before. From there it will be transferred into the ALU. At the same time 

the contents of the accumulator will be transferred onto a bus in the reg- 

ister section and from there into the second input to the ALU. The results 

of the arithmetic or logic operation will be transferred back to the accumu- 

lator on the next cycle by transferring first onto the bus and then into 

the accumulator. All of these data transfers take place during the Phase 

One clock pulse. 

The program counter (PCL, PCH) provides the addresses which step 

the processor through sequential instructions in the program. Each time 

the processor fetches an instruction from program memory, the contents of 

PCL is placed on the low order eight bits of the address bus and the con- 

tents of PCH is placed on the high order eight bits. This counter is 

incremented each time an instruction or data is fetched from program memory. 
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The accumulator is a general purpose 8-bit register which stores 

the results of most arithmetic and logic operations. In addition, the accu- 

mulator usually contains one of the two data words used in these operations. 

All logic and arithmetic operations take place in the ALU. This 

includes incrementing and decrementing of internal registers (except PCL 

and PCH). However, the ALU cannot store data for more than one cycle. If 

data is placed on the inputs to the ALU at the beginning of one cycle, the 

result is always gated into one of the storage registers or to external 

memory during the next cycle. Each bit of the ALU has two inputs. These 

inputs can be tied to various internal busses or to a logic zero; the ALU 

then generates the SUM, AND, OR, etc. function using the data on the two 

inputs. 

The stack pointer (S) and the two index registers (X and Y) each 

consist of 8 simple latches. These registers store data which is to be 

used in calculating addresses in data memory. The specific operation of 

each cf th LYogramiing Manual. 

The address bus buffers (ABL, ABH) consist of a set of latches and 

TTL compatible drivers. These latches store the addresses which are used 

in accessing the peripheral devices (ROM, RAM, and 1/0). 

1.4.1.2 The MCS6501 Pinouts 

Figure 1.12 shows a diagram of the MCS6501 microprocessor with the 

various pins designated. These pins and their use in microcomputer systems 

are discussed separately below. 

1.4.1.2.1 Vec, Vss--Supply Lines 

The Vcc and Vss pins are the only power supply connections to 

the chip. The supply voitage on pin 8 is +5.0 V DC + 5%. The absolute 

limit on the Vcc input is +7.0 V DC. 

1.4.1.2.2 ABOO-AB15--Address Bus 

The address bus buffers on the MCS650X family of microprocessors 

are push/pull type drivers capable of driving at least 130 pf and 1 stan- 

dard TTL load. 

The address bus will always contain known data as detailed in 

Appendix A. The addressing technique involves putting an address on the 

address bus which is known to be either in program sequence, on the same 
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page in program memory or at a known point in RAM. A brief study of Appen- 

dix A will acquaint the designer with the detailed operation of this bus. 

The various processors differ somewhat in the number of address 

lines provided. In particular, the MCS6504 provides thirteen address lines 

(ABOO - AB12) and the MCS6503 and MCS6505 provide twelve (ABOO - AB11). As 

a result, the MCS6504 can address 8,192 bytes of memory and the MCS6503 and 

MCS6505 can address 4,096 bytes. This total address space should prove to 

be more than sufficient for the small, cost-sensitive systems where these 

devices should find their greatest application. 

The specific timing of the address bus is exactly the same for 

all the processors. The address is valid 300 ns (at 1 MHz clock rate) into 

the G1 clock pulse and stays stable until the next $1 pulse. This specifi- 

cation will only change for processors which are specified to operate at a 

higher clock rate. Figure 1.13 details the relation of address bus to 

other critical signals. 

Because of the reduced number of address lines on the 28-pnin 

processors, it is possible to write a program which attempts to access non~ 

existent memory address space, i.e., the address bits 13, 14, or 15 set. to 

logic "1." These upper address bits in the program will be ignored and the 

program will drop into existing address space. This assumes proper memory 

management when using devices of large addressing capability such that the 

addressed memory space will fit within the constraints of a device with 

smaller available memory addressing capability. 

1.4.1.2.3 DBO-DB/7--Data Bus 

The processor data bus is exactly the same for the processors 

currently available and for the software-compatible processors which will 

be introduced in the near future. All instructions and data transfers be- 

tween the processor and memory take place on these lines. The buffers driv- 

ing the data bus lines have full "three-state" capability. This is neces- 

sitated by the fact that the lines are bi-directional. 

Each data bus pin is connected to an input and an output buffer, 

with the output buffer remaining in the "floating" condition except when 

the processor is transferring data into or out of one of the support chips. 

All inter-chip data transfers take place during the Phase Two clock pulse. 

During Phase One the entire data bus is "floating." 
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The data bus buffer is a push/pull driver capable of driving 

130 pf and 1 standard TTL load at the rated speed. At a 1 MHz clock rate, 

the data on the data bus must be stable 100 ns before the end of Phase Two. 

This is true for transfers in either direction. Figure 1.13 details the 

relationship of the data hus to other signals 

1.4.1.2.4 R/W--Read/Write 

The Read/Write line allows the processor to control the direc- 

tion of data transfers between the processor and the support chips. This 

line is high except when the processor is writing to memory or to a peri- 

pheral interface device. 

All transitions on this line occur during the Phase One clock 

pulse (concurrent with the address lines). This allows complete control 

of the data transition which takes place during the Phase Two clock pulse. 

The R/W buffer is similar to the address buffers. They are 

capable of driving 130 pf and one standard TTL load at the rated speed. 

Again, Figure 1.13 details the relative timing of the R/W line. 

1.4.1.2.5 DBE--Data Bus Enable 

On the MCS6501, a data bus enable signal is provided to allow 

external enabling of the data bus. This line is connected directly to the 

Phase Two input clock signal for any normally operating system and is de- 

tailed in Figure 1.13. 

The DBE signal affects only the data bus buffers. It does not 

affect processor timing and has no effect on the address of the R/W lines. 

This input is provided primarily for use in systems which use 

non-family devices for either the memory or the peripheral interface func- 

tions. in particuiar, it ailows the data bus to be enabied for a period 

longer than the Phase Two clock pulse for systems requiring greater proces- 

sor hold time on the data bus. This application is covered in greater de- 

tail in Chapter 2. 

1.4.1.2.6 VMA--Valid Memory Address 

As mentioned above, the MCS650X family of microprocessors always 

puts known addresses on the address bus and, as a result, does not require a 

VMA signal. However, to remain pin-compatible with the MC6800, the VMA pin 
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is connected internally to the Vcc power supply. This assures operation in 

systems in which VMA is part of the chip-select function. This pin is not 

available on the 28-pin processors. 

1.4.1.2.7 BA--Bus Available 

The bus available signal is provided on the MCS6501 to signal to 

a DMA controller, etc. that the processor is stopped and that the data and 

address busses can be used for other than processor program execution. 

This operation is similar to that of the MC6800 bus available 

signal except that much less time is required to stop the MCS6501 since the 

MC6800 requires completion of the current instruction before stopping. If 

no write operation takes place during the cycle in which the RDY signal 

goes low, the BA will go high (> 2.4V) during Phase Two of the same cycle. 

In general, BA will go high during the first Phase Two pulse during which 

the R/W line is high. For the current processors, the maximum time is 

3-1/2 cycles. 

1.4.1.2.8 RDY--Ready 

line is pulled low. This line should change during the Phase One clock 

pulse. This change is then recognized during the next Phase Two pulse to 

enable or disable the execution of the current internal machine cycle. 

This execution normally occurs during the next Phase One clock; timing is 

shown in Figure 1.13. | 

The primary purpose of the RDY line is to delay execution of a 

program fetch cycle until data is available from memory. This has direct 

application in prototype systems employing light-erasable PROMs or EAROMs. 

Both of these devices have relatively slow access times and require imple- 

mentation of the RDY function if the processor is to operate at full speed. 

Without the RDY function a reduction in the frequency of the system clock 

would be necessary. 

The RDY function will not stop the processor in a cycle in which 

a WRITE operation is being performed. If the RDY line goes from high to 

low during a WRITE cycle the processor will execute that cycle and will 
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1.4.1.2.9 NMI--Non-Maskable Interrupt 

The NMI input, when in the interrupted state, always interrupts 

the processor after it completes the instruction currently being executed. 

This interrupt is not "maskable," i.e., there is no way for the processor 

to prevent recognition of the interrupt. 

The NMI input responds to a negative transition. To interrupt 

the processor, the NMI input must go from high (> +2.4V) to low 

(< +0.4V). It can then stay low for an indefinite period without affecting 

the processor operation and without another interrupt. The processor will 

not detect another interrupt until this line goes high and then back to low. 

The NMI signal must be low for at least two clock cycles for the interrupt 

to be recognized, whereupon new program count vectors are fetched. 

1.4.1.2.10 IRQ--Interrupt Request 

The interrupt request (IRQ) responds in much the same manner as 

NMI. However, this function can be enabled or disabled by the interrupt 

inhibit bit in the processor status register. As long as the I flag (inter- 

rupt inhibit flag) is a logic 1, the signal on the IRQ pin will not affect 

the processor. | 

The IRQ pin is not edge-sensitive. Instead, the processor will 

be interrupted as long as the I flag is a logic"0" and the signal on the 

TRO input is at GND. Because of this, the IRQ signal must be held low un- 

til it is recognized, i.e., until the processor completes the instruction 

currently being executed. If I is set when TRQ goes low, the interrupt will 

not be recognized until I is cleared through software control. To assure 

that the processor will not recognize the interrupt more than once, the I 

flag is set automatically during the last cycle before the processor begins 

executing the interrupt software, beginning with the fetch of program count. 

The final requirement is that the interrupt input must be 

cleared before the I flag is reset. If there is more than one active 

interrupt driving these two lines (OR'’ed together), the recommended pro- 

cedure is to service and clear both interrupts before clearing the I flag. 

However, if the interrupts are cleared one at a time and the I flag is re- 

set after each, the processor will simply recognize any interrupts still 

active and will process them properly but more slowly because of the time 

required to return from one interrupt before recognizing the next. If the 
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procedure recommended above is followed, each interrupt will be recognized 

and processed only once. Figure 1.14 provides several examples of inter- 

rupts, microprocessor recognition of each interrupt (IRQ and NMI), and pro- 

: 1 . a aed + cessor selection of interrupts during overlapped requests. 
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INTERRUPT | ; 6 : | | | 

MASK BIT Lo Lo 

Examples of Interrupt Recognition by MCS650X 

FIGURE 1.14 

Each major event affecting the microprocessor is numbered in 

the figure with the corresponding explanations below. 

Event 

Number System Activity 

1. Processor is executing from main program and IRQ goes 
to low state. 

2. Upon completion of current instruction, the processor 
recognizes the interrupt, stores the contents of PC 
and P onto the stack and then sets I during the fetch 
of the interrupt vector. 

3. After servicing the interrupt, IRQ -should be reset 
before resetting the interrupt mask bit to avoid 
double interrupting. 

4. Before the processor resumes normal main program exe- 
cution the interrupt mask bit will be reset low. 

5. NMI now goes low, signalling a non-maskable interrupt 
request. 
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Event 

Number System Activity 

6. The NMI interrupt is recognized and serviced in the 

same manner as IRQ. 

7. The processor has resumed normal operation when NMI 

again goes low requesting an interrupt. 

8. The interrupt mask bit is set high in response to 

the NMI request. 

9. Here IRQ has gone low to signal an_interrupt request. 

This request is ignored since the NMI interrupt is 

being serviced and the interrupt mask is set. 

10. The interrupt mask bit is reset after servicing the NMI 

interrupt. 

11. The processor is now able to recognize the IRQ signal, 

which is stiil low, and does so by setting the inter- 

rupt mask bit. 

12. During the servicing of TRQ, NMI goes from high to low. 

The processor then completes the current instruction 

and abandons the IRQ interrupt to service NMI. NMI 

is serviced regardless of the state of the interrupt 

mask bit. 

13. After completing the NMI interrupt routine, the pro- 

cessor will resume execution of the IRQ routine, even 

though IRQ has subsequently gone high. 

1.4.1.2.11 RES--Reset 

The RES line is used to initialize the microprocessor from a 

power-down condition. During the power-up time this line is held low, and 

writing from the microprocessor is inhibited. When the line goes high, the 

microprocessor will delay 6 cycles and then fetch the new program count vec- 

tors from specific locations in memory (PCL from location FFFC and PCH from 

location FFFD). This is the start of the user's code. It should be assumed 

that any time the reset line has been pulled low and then high, the internal 

states of the machine are unknown and all registers must be re-initialized 

during the restart sequence. Timing for the reset sequence is shown in 

Figure 1.13. 
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1.4.2 The MCS6502 

1.4.2.1 Product Characteristics 

The MCS6502 is very similar to the MCS6501 described in detail in 

the previous section. It provides a full 16-pin address bus and therefore 

addresses a full 65,536 words in memory. It also has the same data bus, 

R/W and RDY available on the MCS 6501. 

Figure 1.15 illustrates the pin configuration of the MCS6502. 

The differences between the two devices are as follows: 

1. The MCS6502 has the oscillator and clock driver on-chip, thus 

eliminating the need for an external high-level two-phase 

clock generator. 

2. The MCS6502 generates a SYNC signal instead of the bus avail- 

able (BA) signal. The SYNC signal is described in detail be- 

low. 

3. Pin 5, corresponding to the MC6800 VMA signal, is not connec- 

ted. 

4. The internal data bus enable function is connected directly to 

the phase two clock on the chip. Therefore pin 36 on the 

MCS6502 is not connected. 

1.4.2.2 Device Timing--Requirements and Generation 

The MCS6501, in maintaining total bus compatibility with the 

MC6800 product family, requires a 5-volt two-phase clock. The MCS6502, 

however, can be used with an externally generated time base consisting of 

either a TTL level single-phase clock, crystal oscillator or RC network. 

Figures 1.16 and 1.17 show the configuration for setting the fre- 

quency of oscillations with a crystal or with an RC network. 

Figure 1.16 displays the crystal mode of operation in which the 

frequency of oscillation is set by the crystal operating in conjunction 

with the RC network. Figure 1.17 displays the same interconnects as in the 

crystal mode of time base generation, with the crystal removed from the 
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circuit. Values of the feedback resistor, Rp» and feedback capacitor, Ca 

will be different for the crystal mode versus the RC mode. While the de- 

tail specifications for values of Ry and Cy are found in the data sheet for 

the MCS6502, clock timing can be generated by use of combinations of Re in 

the range of 0 to 500K ohms and CE in the range of 2 to 12 pf. The reader 

is teferred to the MCS6502 data sheet for a detailed description of the 

application of RC networks and crystal oscillators for generation of the 

time base in these modes of operation. 

The MCS6500 bus discipline described in Section 1.3.1 is appli- 

cable wherever the oscillator is located. For data transfers to be properly 

carried out between the processor and the various support chips in the sys- 

tems, the timing of the clocks controlling the internal processor opera-— 

tions must be very close to that of the phase two clock out of pin 39 of 

the processor with no more than two TTL delays for clock buffering. It is 

important in systems which drive the clock generators with a TIL square 

wave that this input waveform not be used to control the peripheral chips 

unless care is taken to assure proper timing of the phase two clock being 

used in these support chips. 

1.4.2.3 SYNC Signal 

In the MCS6502, a SYNC signal is provided to identify those cycles 

in which the processor is doing an OP CODE fetch. The SYNC line goes high 

during phase one of an OP CODE fetch and stays high for the remainder of 

that cycle. If the RDY line is pulled low during the phase one clock pulse 

in which the SYNC line went high, the processor will stop in its current 

state. It remains in that state until the RDY line goes high. In this 

manner, the SYNU signal can be used to control RDY to cause single-instruc— 

tion execution. This application is discussed in detail in Chapter 2. 

Figure 1.18 contains a timing diagram for this signal. 

1.4.2.4 S.0.--Set Overflow 

This pin sets the overflow flag on a negative transition from 

TIL one to TTL zero. This is designed to work with a future I/0 part and 

should not be used in normal applications unless the user has programmed 

for the fact the arithmetic operations also affect the overflow flag. 
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Figure 1.20 illustrates the pin designation for the three proces- 

sors, indicating the tradeoffs that exist between control signais and ad- 
dressing capability due to pinout constraints. Like the MCS6502, the 28- 

pin microprocessors also have the on-the~-chip oscillator and clock drivers. 

Figures 1.21 and 1.22 display the circuitry necessary to generate the time 

base in the crystal mode and RC network mode respectively. Specific de- 

tails on the values of feedback resistance, Re and feedback capacitance, 

Ch» can be found in the appropriate data sheet. 
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1.5 PERIPHERAL INTERFACE DEVICE — MCS6520 

1.5.1 Introduction 

The MCS6520 is a direct pin for pin replacement for the Motorola 

MC6820 Peripheral Interface Adapter, the "PIA". As such, it meets all of 

the "PIA" electrical specifications and is totally hardware compatible 

with the MC6820. 

The MCS6520 is an I/O device which acts as an interface between 

the microprocessor and peripherals such as printers, displays, keyboards, 

etc. The prime function of the MCS6520 is to respond to stimulus from 

each of the two worlds it is serving. On the one side, the MCS6520 is 

interfacing with peripherals via two eight-bit bi-directional peripheral 

data ports. On the other side, the device interfaces with the micropro- 

cessor through an eight-bit data bus; this is the same data bus discussed 

at length in Section 1.3.1. It is, therefore, simplest to view the basic 

function of the MCS6520 as in the block diagram of Figure 1.23. 

CONTROL 

8 BIT 8 BIT 
DATA BUS DATA PORT PERIPHERAL 

MICROPROCESSORS DEVICES _ 
MCS650X MCS6520 PRINTERS, 

DISPLAYS, ETC. 
8 BIT | 

CONTROL DATA PORT 

CONTROL 

Racin MCOCRSIN Intortaco Dinaram 
AP MDIEU AURIS ae a vow guwew — WH ey ww 

FIGURE 1.23 
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in addition to the lines described above, the MCS6520 provides four 

interrupt input/peripheral control lines and the logic necessary for 

simple, effective control of peripheral interrupts. No external logic 

is required for interfacing the MCS650X microprocessor to most peripheral 

devices. 

The functional configuration of the MCS6520 is programmed by the 

microprocessor during systems initialization. Each of the peripheral 

data lines is programmed to act as an input or output and each of the four 

control/interrupt lines may be programmed for one of four possible control 

modes. This allows a high degree of flexibility in the overall operation 

of the interface. 

Some of the more importan 

* Compatibility with the MCS650X microprocessors. 

A Eight-bit bi-directional data bus for communication with 
the microprocessor. 

* Two eight-bit bi-directional ports for interface to 
peripherals. 

* Two programmable control registers. 

* Two programmable Data Direction Registers. 

* Four individually controlled interrupt input lines - 
two usable as peripheral control outputs. 

* Handshake control logic for input and output peripheral 
operation. 

+ High impedance three-state and direct transistor drive 
peripheral lines. 

* Program controlled interrupt and interrupt mask capability. 

1.5.2 Organization of the MCS6520 

Figure 1.25 contains a block diagram of the MCS6520 showing the 

internal registers and data paths and the various inputs and outputs on 

the device. This section contains a general description of the internal 

organization of the device along with a discussion of how the various 

registers affect one another. The following sections discuss the details 
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of the inputs and outputs on the chip, along with a detailed discussion of 

the operation of each register. The final section discusses the MCS6520 

from an operational viewpoint, describing the interaction of the register 

bits, input/output lines, etc. 

The MCS6520 is organized into two independent sections referred to 

as the "A Side" and the "B Side." Each section consists of a Control Regis- 

ter (CRA, CRB), Data Direction Register (DDRA, DDRB), Output Register (ORA, 

ORB), Interrupt Status Control and the buffer necessary to drive the Periph- 

eral Interface busses. 

1.5.2.1 Data Input Register 

When the microprocessor writes data into the MCS6520, the data 

which appears on the data bus during the Phase Two clock pulse is latched 

into the Data Input Register. It is then transferred into one of six in- 

ternal registers of the MCS6520 after the trailing edge of Phase Two. This 

assures that the data on the peripheral output lines will not "olitch," 

i.e., the output lines will make smooth transitions trom high to iow or from 

low to high and the voltage will remain stable except when it is going to 

the opposite polarity. 

1.5.2.2 Control Registers (CRA and CRB) 

Figure 1.29 illustrates the bit designation and functions in the 

Control Registers. The Control Registers allow the microprocessor to con- 

trol the operation of the interrupt lines (CA1, CA2, CBl1, CB2), and periph- 

eral control lines (CA2, CB2). A single bit in each register controls the 

addressing of the Data Direction Registers (DDRA, DDRB) and the Output Reg- 

isters (ORA, ORB) discussed below. In addition, two bits (bit 6 and 7) are 

provided in each controi register to indicate the status of the interrupt 

input lines (CA1, CA2, CBl, CB2). These interrupt status bits (TROA, TROB) 

are normally interrogated by the microprocessor during the interrupt serv- 

ice program to determine the source of an active interrupt. These are the 

interrupt lines which drive the interrupt input (IRQ, NMI) of the micro- 

processor. The other bits in CRA and CRB are described in the discussion 

of the interface to the peripheral device (Section 1.5.4). 

The various bits in the control registers will be accessed many 

times during a program to allow the processor to enable or disable inter- 

rupts, change operating modes, etc. as required by the peripheral device 

being controlled. 
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1.5.2.3 Data Direction Registers (DDRA, DDRB) 

The Data Direction Registers allow the processor to program each 

(Tt line in the 8-bit Peripheral I/0 port to act as either an input or an out— 

put. Each bit in DDRA controls the corresponding line in the Peripheral A 

port and each bit in DDRB controls the corresponding line in the Peripheral 

B port. Placing a "0" in the Data Direction Register causes the correspond- 

ing Peripheral I/0 line to act as an input. A "1" causes it to act as an 

output. 

The Data Direction Registers are normally programmed only during 

the system initialization routine which is performed in response to a Reset 

signal. However, the contents of these registers can be altered during 

system operation. This allows very convenient control of some peripheral 

devices such as keyboards. 

1.5.2.4 Peripheral Output Registers (ORA, ORB) 

The Peripheral Output R gisters store the output d 

pears on the Peripheral 1/0 port. Writing an "0" into a bit in ORA causes 

the corresponding line on the Peripheral A port to go low « 0.4V) if that 

line is programmed to act as an output. A "1" causes the corresponding 

output to go high. The lines of the Peripheral B port are controlled by 

ORB in the same manner. 

Addressing of these registers is discussed in Section 1.5.3.4. 

1.5.2.5 Interrupt Status Control 

The four interrupt/peripheral control lines (CAl, CA2, CBl, CB2) 

are controlled by the Interrupt Status Control (A, B). This logic inter- 

prets the contents of the corresponding Control Register, detects active 

transitions on the interrupt inputs and performs those operations necessary 

to assure proper operation of these four peripheral interface lines. The 

operation of these lines is described in detail in Section 1.5.4. 2. 

1.5.2.6 Peripheral Interface Buffers (A, B) and Data Bus Buffers (DBB) 

The Buffers which drive the peripheral I/0 ports and the data bus 

provide the current and voltage drive necessary to assure proper system 

operation and to meet the device specifications. 
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1.5.3 Interface Between MCS6520 and the MCS650X Family of Microprocessors 

The MCS6520 interfaces to the microprocessor with an 8-bit bi-direc- 

tional data bus, 3 chip-select lines, 2 register-select lines, 2 interrupt 

request lines, read/write line, enable line and reset line. 

1.5.3.1 Data Bus (DO-D7) 

The 8-bit, bi-directional data bus allows the transfer of data be- 

tween the microprocessor and the MCS6520. The data bus output drivers are 

3-state devices that remain in the high impedance state except when the 

microprocessor reads data from the peripheral adapter. This data bus is 

the same as discussed in Section 1.3.1, "Bus Structure." 

1.5.3.2 Enable (E) 

The Enable input is the only microprocessor interface timing input 

on the peripheral interface device. All data transfers into and out of the 

MCS6520 are controlled by this signal. In mormal operation, this input 

should be connected to the phase two clock signal. In the case of the 

MCS6501, this is the $2 clock generated external to the microprocessor 

chip. For on-chip oscillator products (MCS6502, MCS6503, MCS6504 and 

MCS6505), the enable pulse becomes $2(OUT). | 

1.5.3.3 Read/Write (R/W) 

This signal is generated by the microprocessor to control the di- 

rection of data transfers on the data bus. A low (< 0.4V) on this line 

enables the input buffers (microprocessor Write) and data is transferred 

from the microprocessor to the MCS6520 under control of Enable input if the 

device has been chip-selected. A high on the R/W line allows the MCS6520 

to transfer data to the data bus buffers. The data bus buffers are enabled 
when the proper chip-select and Enable Signals are present. Figure 1.26 

illustrates the Read/Write timing. 

1.5.3.4 Chip Select Lines (CSI, CS2, CS3) 

These three inputs allow the microprocessor to select the proper 

peripheral interface device. CS1 and CS2 must be high and CS3 must be low 

for selection of the device. Data transfers are then performed under con- 

trol of the Enable and R/W signals. These lines are normally connected to 

the address iines on the microprocessor, either directly or through address 

decoders. 
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As described in Section 1.5.5.2, a single bit in each Control Reg- 

ister (CRA and CRB) controls access to the Data Direction Register or the 

Peripheral interface. If bit 2 in the Control Register is a "1," a Periph- 

eral Output register (ORA, ORB) is selected, and if bit 2 is a "0," the 

Data Direction Register is selected. Internal registers are selected by 

the Register Select lines (RS@, RS1) and the Data Direction Register Access 

Control bit as follows: 

Data Direction 

Register Access 

Control Bit 

RSL RS@ CRA-2 CRB-2 Register Selected 

¢ d 1 - Peripheral Interface A (See 

Section 1.5.3.5.1) 

d ) d - Data Direction Register A 

- - Control Register A 

g _ 1 Peripheral Interface B (See 

Section 1.5.3.5.2) 

1 ) - d Data Direction Register B 

1 1 - ~ Control Register B 

If the programmer wishes to write the data into DDRA, ORA, DDRB, 

or ORB, he must first set bit 2 in the proper Control Register. The de- 

sired register can then be accessed with the address determined by the 

address interconnect technique used. (See Chapter 2, Section 2.3.1 for a 

discussion of addressing in MCS650X systems.) 

1.5.3.5 Register Select Lines (RSO), (RS1) 

These two register select lines are used to select the various reg- 

isters inside the MCS6520. These input lines are used in conjunction with 

internal control registers to select a particular register that is to be 

accessed by the microprocessor. These lines are normally connected to 

microprocessor address output lines. These lines operate in conjunction 

with the chip-select inputs to allow the microprocessor to address a single 

8-bit register within the microprocessor address space. This register may 

be an internal register (CRA, ORA, etc.) or it may be a Peripheral I/0 port. 

The processor can write directly into the Control Registers (CRA, 

CRB), the Data Direction Registers (DDRA, DDRB) and the Peripheral Output 

Registers (ORA, ORB). In addition, the processor can directly read the 
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contents of the Control Registers and the Data Direction Registers. Access-— 

ing the Peripheral Output Register for the purpose of reading data back into 

the processor operates differently on the ORA and the ORB registers and é - — an - 

therefore are discussed separately below. 

1.5.3.5.1 Reading the Peripheral A 1/0 Port 

The Peripheral A 1/0 port consists of 8 lines which can be pro- 

grammed to act as inputs or outputs. When programmed to act as outputs, 

each line reflects the contents of the corresponding bit in the Peripheral 

Output Register. When programmed to act as an input, these lines will go 

high or low depending on the input data. The Peripheral Output Register 

(ORA) has no effect on those lines programmed to act as inputs. The 8 

lines of the Peripheral A I/0 port therefore contain either input or output 

data depending on whether the line is programmed to act as an input or an 

output. Figure 1.2/a illustrates the interface timing. 

orming a Read operation with RSi = 0, RSO = 6 and the Data 

Direction Register Access Control bit (CRA-2) = 1, directly transfers the 

data on the Peripheral A I/0 lines into the processor (via the data bus). 

he input and output data. The processor must be 

programmed to recognize and interpret only those bits which are important 

to the particular peripheral operation being performed. 

Since the processor always reads the Peripheral A 1/0 port pins 

instead of the actual Peripheral Output Register (ORA), it is possible for 

the data read into the processor to differ from the contents of the Periph- 

eral Output Register for an output line. This is true when the I/O pin is 

not allowed to go to a full +2.4V DC when the Peripheral Output register 

contains a logic 1. In this case, the processor will read a @ from the 

Peripheral A pin, even though the corresponding bit in the Peripheral Out- 

put register is al. 

1.5.3.5.2 Reading the Peripheral B I/0 Port 

Reading the Peripheral B I/0 port yields a combination of input 

and output data in a manner similar to the Peripheral A port. However, 

data is read directly from the Peripheral B Output Register (ORB) for those 

lines programmed to act as outputs. It is therefore possible to load down 

the Peripheral B Output lines without causing incorrect data to be trans-— 

ferred back into the processor on a Read operation. Figure 1.27b illus- 

trates the timing. 
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The details of the Peripheral A and Peripheral B ports will be 

discussed in the next section under the discussion of the interface between 

the MCS6520 and the Peripheral Devices. 

1.5.3.6 Reset (RES) 

The active low Reset line resets the contents of all MCS6520 reg- 

isters to a logic zero. This line can be used as a power-on reset or as a 

master reset during system operation. 

1.5.3.7 Interrupt Request Line (IRQA, IRQB) 

The active low Interrupt Request lines (IRQA and TIRQB) act to 

interrupt the microprocessor either directly or through external interrupt 

priority circuitry. These lines are "open source" (no load device on the 

chip) and are capable of sinking 1.6 milliamps from an external source. 

This permits all interrupt request lines to be tied together in a "wired-OR" 

ifigu 1. The "A" and "RB" in the titles of these lines correspond to 

the "A" peripheral port and the "B" peripheral port. Hence each interrupt 

request line services one peripheral data port. 

Each Interrupt Request line has two interrupt flag bits which can 

cause the Interrupt Request line to go low. These flags are bits 6 and 7 

in the two Control Registers. These flags act as the link between the 

peripheral interrupt signals and the microprocessor interrupt inputs. Each 

flag has a corresponding interrupt disable bit which allows the processor 

to enable or disable the interrupt from each of the four interrupt inputs 

(CA1l, CA2, CB1, CB2). 

The four interrupt flags are set by active transitions of the sig- 

nal on the interrupt input (CAl, CA2, CB1, CB2). Controlling this active 

transition is discussed in the next section under the discussion of the 

interface between the MCS6520 and the peripheral device. 

1.5.3.7.1 Control of IRQA 

Control Register A bit 7 is always set by an active transition 

of the CAl interrupt input signal. Interrupting from this flag can be dis- 

abled by setting bit 0 in the Control Register A (CRA) to a logic 0. Like- 

wise, Control Register A bit 6 can be set by an active transition of the 

CA2 interrupt input signal. Interrupting from this flag can be disabled by 

setting bit 3 in the Control Register to a logic Q. 

-63- 



Both bit 6 and bit 7 in CRA are reset by a "Read Peripheral Out- 

put Register A" operation. This is defined as an operation in which the 

proper chip-select and register-select signals are provided to allow the 

processor to read the Peripheral A I/O port. 

1.5.3.7.2 Control of IRQB 

Control of TROB is performed in exactly the same manner as that 

described above for TROA. Bit 7 in CRB is set by an active transition on 

CB1; interrupting from this flag is controlled by CRB bit @. Likewise, bit 

6 in CRB is set by an active transition on CB2; interrupting from this flag 

is controlled by CRB bit 3. 

Also, both bit 6 and bit 7 are reset by a "Read Peripheral B 

Output Register" operation. 

SUMMARY : 

IRQA goes low when CRA-7 = 1 and CRA-O = i or when CRA-6 = 1 and 

CRA-3 = 1. 

TRQB goes low when CRB-7 = 1 and CRB-O = 1 or when CRB-6 = I and 

CRB-3 = l. 

The use of these interrupt flags and interrupt disable bits is 

discussed in more detail in Section 1.5.4. 

It should be stressed at this point that the flags act as the 

link between the peripheral interrupt signals and the processor interrupt 

inputs. The interrupt disable bits allow the processor to control the 

interrupt function. 

1.5.4 Interface Between MCS6520 and Peripheral Devices 

The MCS6520 provides 2 8-bit bi-directional ports and 4 interrupt/ 

control lines for interfacing to peripheral devices. These ports and the 

associated interrupt/control lines are referred to as the "A" side and the 

and the "B'"' side. Each side has its own unique characteristics and will 

therefore be discussed separately below. 

1.5.4.1 Peripheral I/0 Ports 

The Peripheral A and Peripheral B I/0 ports allow the microproces- 

sor to interface to the input lines on the peripheral device by loading 

data into the Peripheral Output Register. They also allow the processor to 

interface with the peripheral device output lines by reading the data on 
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the Peripheral Port input lines directly onto the data bus and into the 

internal registers of the processor. 

1.5.1.1.1 Peripheral A I/0 Port (PAQ@-PA7) 

As discussed in Section 1.5.2.3. each of the Peripheral I/O lines 

can be programmed to act as an input or an output. This is accomplished by 

in the corresponding bit i aa (t he Data Direction Register for 

those lines which are to act as outputs. A "0" in a bit of the Data Direc- 

tion Register causes the corresponding Peripheral I/0 lines to act as an 

input. 

The buffers which drive the Peripheral A I/0 lines contain 

"passive" pull-ups as shown in Figure 1.28a. These pull-up devices are 

resistive in nature and therefore allow the output voltage to go to Vdd for 

a logic 1. The switches can sink a full 1.6 ma, making these buffers cap- 

able of driving one standard TIL load. 

In the input mode, the pull-up devices shown in Figure 1.28a are 

still connected to the I/0 pin and still supply current to this pin. For 

this reason, these lines represent one standard TTL load in the input mode. 

1.5.4.1.2 Peripheral B 1/0 Port (PBO-PB7) 

The Peripheral B I/0 port duplicates many of the functions of 

the Peripheral A port. The process of programming these lines to act as an 

input or an output has been discussed previously. Likewise, the effect of 

reading or writing this port has been discussed. However, there are sev- 

eral characteristics of the buffers driving these lines which affect their 

use in peripheral interfacing. These will be discussed below. 

The Peripheral B I/O port buffers are push-pull devices as shown 

in Figure 1.28b. The pull-up devices are switched "OFF" in the "0" state 

and "ON" for a logic 1. Since these pull-ups are active devices, the logic 

"1" voltage is not guaranteed to go higher than +2.4V. They are TTL com- 

patible but are not CMOS compatible. 

However, the active pull-up devices can sink up to 1 ma at 1.5V. 

This current drive capability is provided to allow direct connection to 

Darlington transistor switches. This allows very simple control of relays, 

lamps, etc. 

Because these outputs are designed to drive transistors directly, 

the output data is read directly from the Peripheral Output Register for 

those lines programmed to act as inputs. 
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The final characteristic which is a function of the Peripheral B 

push-pull buffers is the high-impedance input state. When the Peripheral B 

I/0 lines are programmed to act as inputs, the output buffer enters the high 

impedance state. These inputs will then have an impedance of greater than 

1 megohnm. 

1.5.4.2 Interrupt Input/Peripheral Control Lines (CAl, CA2, CB1l, CB2) 

The four interrupt input/peripheral control lines provide a number 

of special peripheral control functions. These lines greatly enhance the 

power of the two general purpose interface ports (PA@-PA7, PBO@-PB7). 

1.5.4.2.1 Peripheral A Interrupt Input /Peripheral Control Lines (CAl, CA2) 

CAl is an interrupt input only. An active transition of the 

signal on this input will set bit 7 of the Control Register A to a logic l. 

The active transition can be programmed by the microprocessor by setting a 

"9" in bit 1 of the CRA if the interrupt flag (bit 7 of CRA) is to be set 

on a negative transition of the CAl signal or a "1" if it is to he set on ~—g& — (p 

positive transition. Note: A negative transition is defined as a trans- 

ition from a high (> 2.4V) to a low (< 0.4V), and a positive transition is 

defined as a transition from a low to a high voltage. 

Setting the interrupt flag will interrupt the processor through 

IRQA if bit @ of CRA is a l as described previously. 

CA2 can act as a totally independent interrupt input or as a 

peripheral control output. As an input (CRA, bit 5 = @) it acts to set the 

interrupt flag, bit 6 of CRA, to a logic 1 on the active transition selec- 

ted by bit 4 of CRA. 

These control register bits and interrupt inputs serve the same 

basic function as that described above for CAl. The input signal sets the 

interrupt flag which serves as the link between the peripheral device and 

the processor interrupt structure. The interrupt disable bit allows the 

processor to exercise control over the system interrupts. 

In the Output mode (CRA, bit 5 = 1), CA2 can operate indepen- 

dently to generate a simple pulse each time the microprocessor reads the 

data on the Peripheral A I/0 port. This mode is selected by setting CRA, 

bit 4 to a "6" and CRA, bit 3 itu a "i." This puise output can be used io 

control the counters, shift registers, etc. which make sequential data 

available on the Peripheral input lines. 
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A second output mode allows CA2 to be used in conjunction with 

CAl to “handshake” between the processor and the peripheral device. On the 

A side, this technique allows positive control of data transfers from the 

peripheral device into the microprocessor. The CAL input signais the pro- 

cessor that data is available by interrupting the processor. The processor 

reads the data and sets CA2 low. This signals the peripheral device that 

it can make new data available. This technique is discussed in detail in 

Chapter 2. 

The final output mode can be selected by setting bit 4 of CRA to 

al. In this mode, CA2 is a simple peripheral control output which can be 

set high or low by setting bit 3 of CRA to al ora @ respectively. 

The operation of CAl and CA2 is summarized in the next section. 

1.5.4.2.2 Peripheral B Interrupt Input/Peripheral Control Lines (CB1, CB2) 

CBl operates as an interrupt input only in the same manner as 

CAl. Bit 7 of CRB is set by the active transition selected by bit 0 of CRB. 

Likewise, the CB2 input mode operates exactly the same as the CA2 input 

modes. The CB2 output modes, CRB, bit 5 = 1, differ somewhat from those of 

CA2. The pulse output occurs when the processor writes data into the Periph- 

eral B Output Register. Also, the “handshaking" operates on data transfers 

from the processor into the peripheral device. 

The operation of CB1 and CB2 is summarized in the next section. 

A more detailed discussion of handshaking on the Peripheral B I/0 port is 

contained in Chapter 2 of this manual. 

1.5.5 Summary of MCS6520 Operation 

1.5.5.1 Control Register Operation 

a ee ee Se ee ee 
IRQA1 

2 

TRQA2 CA2 Control DDRA CAl Control 
Eee, Access Ce, 

IRQB1 IRQB2 CB2 Control DDRB CB2 Control 
, Access J, 

CRA 

Control Register Bit Designations 

FIGURE 1.29 
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CRA (CRB) 
Active Transition IRQA (IRQB) 

Bit 1 Bit 0 of Input Signal* Interrupt Outputs 

negative Disable-~-remain high 

Enabled--goes low when bit 7 
in CRA (CRB) is set by active 

transition of signal on CAI 

(CB1) 

negative 

positive Disable--remain high 

positive Enable--as explained above 

*Note 1: Bit 7 of CRA (CRB) will be set to a logic 1 by an active 

transition of the CAl (CB1) signal. This is independent 
he state of Bit @ in CRA (CRB). afr + 

UL eric SoOv1aree vai wv 

Control of Interrupt Inputs CA1, CB1 

FIGURE 1.30 

Active Transition IRQA CIRQB) 
of Input Signal* Interrupt Output 

negative Disable--remains high 

Enabled--goes low when bit 6 
in CRA (CRB) is set by active 

transition ef signal on CA2 
(CB2) 

negative 

positive Disable--remains high 

positive Enable--as explained above 

Bit 6 of CRA (CRB) will be set to a logic 1 by an active 
transition of the CA2 (CB2) signal. This is independent 

of the state of Bit 3 in CRA (CRB). 

Control of CA2 (CB2) as Interrupt Inputs (Bit 5 = “‘0”’) 

FIGURE 1.3la 
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CRA 

Bit 5 Bit 4 Bit 3 Mode Description 

CA2 is set high on an active 

transition of the CAl interrupt 

input signal and set low by a 
i 0 0 "Handshake" microprocessor "Read A Data" 

| operation. This allows posi- | 

tive control of data transfers 

from the peripheral device to 
the microprocessor. 

CA2 goes low for one cycle 

after a "Read A Data" opera- 
1 0 1 Pulse Output tion. This pulse can be used 

to signal the peripheral de- 

vice that data was taken. 

1 1 0 | Manual Output CA2 set low 

Manual Output CA2 set high 

Control of CA2 Output Modes 

FIGURE 1.31b 

CRB 

Bit 5 Bit 4 Bit 3 Description 

CB2 is set low on microproces- 

sor "Write B Data" operation 
and is set high by an active 

"Handshake" transition of the CBl interrupt 
on Write input signal. This allows posi- 

tive control of data transfers 

from the microprocessor to the 

peripheral device. 

CB2 goes low for one cycle after 

a microprocessor “Write B Data” 
1 0 1 Pulse Output operation. This can be used to 

signal the peripheral device 
that data is available. 

1 1 0 Manual Output CB2 set low 

Manual Output CB2 set high 

Control of CB2 Output Modes 

FIGURE 1.31c 
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1.5.5.2 MCS6520 Operation in MC6500 Systems 

A brief review of the overall operation of the MCS6520 should 

serve to tie together many of the details discussed previously. 

During the system initialization routine which is executed in 

response to the processor RESET signal, the microprocessor will write 

a pattern of 1's and @'s into the Data Direction Registers. This will 

determine those lines which are to act as inputs and those which are to 

act as outputs. 

This pattern will usually be fixed for the system operation. 

Therefore, the next step would be to set the various operating modes, 

active transitions, etc. which are controlled by the Control Registers. 

At the same time the Data Direction Register Access Control Bit can be 

set to a 1 to allow the processor to control the Peripheral Ports during 

system operation. 

The interrupts will normally remain disabled until the entire 

system is initialized. At this time, the interrupts are enabled and full 

system operation begins. 

During system operation, the microprocessor will interrogate the 

switches, sensors, etc. in the peripheral device by reading the data on the 

Peripheral Input lines. Binary or decimal data may be transferred into the 

microprocessor in the same way. At the same time the various lights, motors, 

solenoids, etc. on the peripheral device are controlled by writing data into 

the appropriate bits of the Peripheral Output Registers. The entire sequence 

of operations is determined by the programmer to control a particular periph- 

eral device in a defined manner. The various registers, gates, etc. in the 

Interface Device act primarily as a link between the internal processor oper- 

ations and the various inputs and outputs on the peripheral devices being 

controlled. 
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1.6 PERIPHERAL INTERFACE/MEMORY DEVICE — MCS6530 
1.6.1 Introduction 

The MCS6530 is designed to operate in conjunction with the MCS650X 
Microprocessor. It is comprised of a mask programmable 1024 x 8 ROM, a 
64 x 8 RAM, two 8 bit bi-directional ports capable of directly inter- 
facing the Microprocessor unit and peripheral devices and a programmable 
interval timer with interrupt, capable of timing in various intervals 
from 1 to 262,144 clock periods. 

The 1/0 configuration, the interval timer and interrupt capability 
are under software control. 

* 8 bit bi-directional Data Bus for communication with 
the microprocessor unit. . 

* Two 8 bit bi-directional ports for direct interface to 
peripherals. 

* Two I/O Peripheral Data Direction Registers 

* Programmable Interval Timer from 1 to 256 x 1024 clock 
periods. 

* Programmable Interval Timer Interrupt 

* C MOS Compatible Peripheral Lines 

* Peripheral Pins with Direct Transistor Drive Capability 

* Three-State Data Pins 

* Up to 7K contiguous ROM with no external decoding 

* 1024 x 8 ROM 

* 64 x 8 Static RAM 

1.6.2 Pinout Description 

Figure 1.33 is the pinout diagram of the MCS6530. 

1.6.2.1 Reset (RES) 

During system initialization a Logic "0" on the RES 
input will cause a zeroing of all 1/0 registers. This in turn will cause 
all 1/0 buses to act as inputs thus protecting external components from 
possible damage and erroneous data while the system is being configured 
under software control. The Data Bus Buffers are put into an OFF-STATE 
during Reset. Interrupt is disabled when reset. The RES signal must 
be held low for at least one clock period when reset is required. 
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1.6.2.2 Input Clock 

The input clock is a system Phase Two clock which can be either a 

low level clock Vin < 0.4, Vig > 2.4) or high level clock (Vir < 0.2, 

_ +.3 
Vin = Vee _ 9) 

1.6.2.3 Read/Write (R/W) 

The R/W signal is supplied by the microprocessing unit and is used 

to control the transfer of data to and from the microprocessing unit and 

the MCS6530. A high on the R/W pin allows the processor to read (with pro- 

per addressing) the data supplied by the MCS6530. A low on the R/W pin 

allows a write (with proper addressing) to the MCS6530. 

1.6.2.4 Interrupt Request (IRQ) 

The TRO pin is an interrupt pin from the interval timer. This 

same pin, if not used as an interrupt, can be used as a peripheral I/0 pin 

(PB7). When used as an interrupt, the pin should be set up as an input by 

the data direction register. The pin will be normally high with a low indi- 

cating an interrupt from the MCS6530. An external pull-up device is not 

required; however, if collector-OR'd with other devices, the internal pull- 

up may be omitted with a mask option. 

1.6.2.5 Data Bus (DO-D7) 

The MCS6530 has eight bi-directional data pins (DO-D7). These 

pins connect to the system's data lines and allow transfer of data to and 

from the microprocessor unit. The output buffers remain in the off state 

except when a Read operation occurs. 

1.6.2.6 Peripheral Data Ports 

The MCS6530 has 16 pins available for peripheral I/0 operations. 

Each pin is individually software programmable to act as either an input or 

an output. The 16 pins are divided into 2 8-bit ports, PAOQ-PA/ and PBO-PB/7. 

PB5, PB6 and PB7 also have other uses which will be discussed in Section 

1.6.4. The pins are set up as an input by writing a "0" into the corre- 

sponding bit in the data direction register. A "1" into the data direction 

register will cause its corresponding bit to be an output. When in the input 

mode, the peripheral output buffers are in the "1" state and a pull-up device 

acts as less than one TTL load to the peripheral data lines. On a Read 

operation, the microprocessor unit reads the peripheral pin. When the 
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peripheral device gets information from the MCS6530 it receives data stored 

in the data register. The microprocessor will read correct information if 

the peripheral lines are greater than 2.0 volts for a "1" and less than 0.8 

volts for a "0" as the peripheral pins are all TTL compatible. Pins PAO 

and PBO are also capable of sourcing 3 ma at 1.5V, thus making them capable 

of Darlington drive. 

1.6.2.7 Address Lines (A0-A9) 

There are 10 address pins. In addition to these 10, there is the 

ROM SELECT pin. The above pins, AOQ-A9 and ROM SELECT, are always used as 

addressing pins. There are 2 additional pins which are mask programmable 

and can be used either individually or together as CHIP SELECTS. They are 

pins PB5 and PB6. When used as peripheral data pins they cannot be used as 

chip selects. 

1.6.3 Internal Organization 

A block diagram of the internal architecture is shown in Figure 1.33. 

The MCS6530 is divided into four basic sections, RAM, ROM, I/0 and TIMER. 

The RAM and ROM interface directly with the microprocessor through the sys- 

tem data bus and address lines. The I/0 section consists of 2 8-bit halves. 

Each half contains a Data Direction Register (DDR) and an I/0 Register. 

The DDR controls the peripheral output buffers. A "1" written into the DDR 

sets up the corresponding peripheral buffer as an output buffer. By this, 

it is meant that anything then written into the I/0 Register will appear on 

that corresponding peripheral pin. A "0" written into the DDR inhibits the 

output buffer from transmitting data from the I/0 Register. The output 

buffer remains in the high state making it ready to receive data on the 

peripheral lines. 

It should be noted that the microprocessor, when reading the I/0 

Register, is in fact reading the Peripheral Pin and not the I/0 Register. 

The only way the I/0 Register data can be changed is by a microprocessor 

Write operation. The Register is not affected by the data on the Periph- 

eral Pin. 

1.6.3.1 ROM--1K Byte (8K Bits) 

The 8K ROM is in a 1024 x 8 configuration. Address lines AO-A9, 

as well as RS@ are needed to address the entire ROM. With the addition of 
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CS1 and CS2, up to seven MCS6530s may be addressed, giving 7168 x 8 bits of 

contiguous ROM. 

1.6.3.2 RAM--64 Bytes (512 Bits) 

A 64 x 8 static RAM is contained on the MCS6530. It is addressed 

by AO-A5 (Byte Select), RSO, A6, A7, A8, AI and, depending on the number 

of chips in the system, CS1 and CS2. 

1.6.3.3 Internal Peripheral Registers 

There are four internal registers, two data direction registers 

and two peripheral I/0 data registers. The two data direction registers (A 

side and B side) control the direction of data into and out of the periph- 

eral pins. For example, a "1" loaded into data direction register A, posi- 

tion 3 sets up peripheral pin PA3 as an output. If a "0"' had been loaded 

instead, PA3 would be configured as an input. The two data I/0 registers 

are used to latch data from the data bus during a Write operation until the 

by the microprocessor unit. 

Although during a Read operation the microprocessor unit reads the periph- 

eral pin, the address is the same as the register. For those pins pro- 

grammed as outputs by the data direction registers, the data on the pins 

will be the same as that in the I/0 register. 

1.6.3.4 Interval Timer 

The Timer section of the MCS6530 contains three basic parts: pre- 

liminary divide down register, programmable 8-bit register and interrupt 

logic. These are illustrated in Figure 1.34. 

The interval timer can be programmed to count up to 256 time 

intervals. Each time interval can be either 1T, 8T, 64T or 1024T incre- 

ments, where T is the system clock period. When a full count is reached, 

an interrupt flag is set to a logic "1." After the interrupt flag is set 

the internal clock begins counting down to a maximum of -255T. Thus, after 

the interrupt flag is set, a Read of the timer will tell how long since the 

flag was set up to a maximum of 255T. 

When writing to the timer, the high order 8 bits of the timer are 

written by the system data bus. If a count of 52 time intervals were to be 

counted, 001101 0 0 would be written into the timer section. The time 

intervals of 1, 8, 64 or 1024T are decoded from address lines A@ and Al at 

this same time. Address line A3, if high during this write operation, 
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enables the interrupt flag onto pin PB/7. PB7 should be programmed as an 

input if it is to be used as an interrupt pin. PB/ goes low when an inter- 

rupt occurs. When the timer is read prior to the interrupt flag being set, 

the number of time intervals remaining will be read, i.e., 51, 50, 49, etc. 

Should the timer be read when interrupt occurs, the value read 

would be 11113114141. After interrupt, the timer register decrements 

at a divide by "1" rate of the system clock. If after interrupt, the timer 

is read and a value of 11100100 is read, the time since interrupt is 

28T. The value read is in two's complement. 

Value read =11100100 

00011011 

00011100 = 28. 

Complement 

ADD 1 

Thus, to arrive at the total elapsed time, merely do a two's complement add 

to the original time written into the timer. Again, assume time written as 

00110100 (= 52). With a divide by 8, total time to interrupt is 

(52 x 8) + 1 = 417T. Total elapsed time would be 416T + 28T = 444T, assum- 

ing the value read after interrupt was 11100100. 

After interrupt, whenever the timer is written or read the inter- 

rupt is reset. However, the reading or writing of the timer at the same 

time interrupt occurs will not reset the interrupt flag. 

Figure 1.35 illustrates an example of interrupt. 

When reading the timer after an interrupt, A3 should be low so as 

to disable the IRQ pin. This is done so as to avoid future interrupts until 

after another Write timer operation. 

1.6.4 Addressing 

Addressing of the MCS6530 offers many variations to the user for 

greater flexibility. The user may configure his system with RAM in lower 

memory, ROM in higher memory, and I/0 registers with interval timers between 

the extremes. There are 10 address lines (AO-A9). In addition, there is 

the possibility of 3 additional address lines to be used as chip-selects and 

to distinguish between ROM, RAM, 1/0 and interval timer. ‘Two of the addi- 

tional lines are chip-selects 1 and 2 (CS1 and CS2). The chip-select pins 

can also be PB5 and PB6. Whether the pins are used as chip-selects or 

peripheral I/0 pins is a mask option and must be specified when ordering 

the part. Both pins act independently of each other in that either or both 
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pins may be designated as a chip-select. The third additional address line 

is RSO. The MCS6502 and MCS6530 in a 2-chip system would use RSO to dis- 

tinguish between ROM and non~-ROM sections of the MCS6530. With the ad- 

dressing pins available, a total of /K contiguous ROM may be addressed with 

no external decode. Below is an example of a l-chip and a 7-chip MCS6530 

Addressing Scheme. 

1.6.4.1 One-Chip Addressing 

Figure 1.36 illustrates a l-chip system decode for the MCS6530. 

1.6.4.2 Seven-Chip Addressing 

In the 7-chip system the objective would be to have 7K of contigu- 

ous ROM, with RAM in low order memory. The 7K of ROM could be placed be- 

tween addresses 65,536 and 1024. For this case, assume A13, Al4 and Al5 

are all 1 when addressing ROM, and 0 when addressing RAM or I/0. This 

would place the 7K ROM between Addresses 65,535 and 57,367. The 2 pins 

designated as chip-select or I/0 would be masked programmed as chip-select 

pins. Pin RSO would be connected to address line A10. Pins CS1 and CS2 

would be connected to address lines All and Al2 respectively. See Figure 

1.37. 

The two examples shown would allow addressing of the ROM and RAM; 

however, once the I/0 timer has been addressed, further decoding is necs- 

sary to select which of the I/0 registers are desired, as well as the cod- 

ing of the interval timer. 

1.6.4.3 1/0 Register--Timer Addressing 

Figure 1.38 illustrates the addressing decoding for the internal 

elements and timer programming. Address line A2 distinguishes I/0 regis- 

ters from the timer. When A2 is low and I/O timer select is high, the 1/0 

registers are addressed. Once the I/0 registers are addressed, address 

lines Al and AG decode the desired register. 

When the timer is selected Al and A@ decode the divide by matrix. 

This is discussed further in the Timer Section. In addition, Address A3 is 

used to enable the interrupt flag to PB/7. 
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The addressing of the ROM select, RAM select and I/O Timer select lines 

would be as follows: 

CS2 cSsl RSO 

Al2 All AIO AQ A&S A7 AG 

MCS6530 #1, ROM SELECT 0 0 1 X X X X 

RAM SELECT 0 0 0 0 0 ) ) 

I/O TIMER 0 0 0 1 0 0 0 

MCS6530 #2, ROM SELECT 0 1 0 X X X X 

RAM SELECT 0 0 0 0 0 0 1 

I/O TIMER 0 0 0 1 0 0) 1 

MCS6530 #3, ROM SELECT 0 1 1 Xx X Xx X 

RAM SELECT 0 0 0 ) 0 1 0 

I/O TIMER 0 0 0 1 0 1 0 

MCS6530 #4, ROM SELECT 1 0 ) X X X X 

RAM SELECT 0 0 0 0 0 1 1 

I/O TIMER 0 0 0 1 0 1 1 

MCS6530 #5, ROM SELECT 1 0 1 X X X X 

RAM SELECT 0 0 0 0 1 0 0 

I/O TIMER 0 0 0 1 1 0 0 

MCS6530 #6, ROM SELECT 1 1 0 X x X X 

RAM SELECT 0 0 0 0 1 0 1 

I/O TIMER 0 0 0 1 1 0 1 

McS6530 #7, ROM SELECT 1 1 1 X X x X 

RAM SELECT 0 0 0 0 1 1 0 

I/O TIMER 0 0 0 1 1 1 0 

* RAM select for MCS6530 #5 would read = A12°A11°A10°A9°A8°A7°A6 

MCS6530 Seven Chip Addressing Scheme 

FIGURE 1.37 
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CHAPTER 2 

CONFIGURING THE MICROCOMPUTER SYSTEM 

2.1 THE SYSTEM CONFIGURATION TASK 

The first part of any microprocessor-based design effort is the system con- 

figuration task. In fact, this probably requires more creativity from the de- 

signer than any other part of the design effort. The goal of the system con- 

figuration effort is the generation of a list of components which will make up 

the system, a detailed interconnect diagram and a detailed description of the 

total system operation. This includes a definition of how the processor will 

control the peripheral devices as well as a definition of the internal opera- 

tions to be performed. This does not include detailed implementation of the 

design such as laying out printed circuit boards and writing programs, but does 

involve enough analysis of the total operation to assure that the system will 

operate properly after all the hardware and software is assembled. 

The technically based selection of components and the definition of the 

general operation of the system must be based on consideration of two factors. 

These are: 

1. System speed requirements 

2. System input/output requirements 

Both of these factors are interrelated. Therefore, it will usually be necessary 

to define an 1/0 configuration and then verify that the processor can operate at 

the speed required by the peripheral devices. If there appears to be any diffi- 

culty with the I/0 operation, this structure must be re-defined and re-analyzed. 

In addition to the speed requirements of the I/0 devices, there are also 

general speed requirements for the internal processor operations (arithmetic 

operations, data manipulation, etc.). This speed requirement is usually some- 

what more flexible than that associated with I/0 but it should be defined along 

with any other system requirements. The ultimate test of system speed must wait 

for the generation of both the hardware and the program; however, the system 

requirements and capability must be analyzed very early in the system develop- 

ment process to assure that no problems will arise during the last stages of the 

design. 
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2.2 INPUT/OUTPUT TECHNIQUES 

2.2.1 The General Purpose Input/Output (1/0) Port 

Although the concept of the I/0 port was introduced briefly in Sec- 

tion 1, and the operation of two MCS6500 family devices which provide gen- 

eral purpose I/0 capability has been discussed in Sections 1.5 and 1.6, 

little has been said about what factors must be considered when configur- 

ing an I/0 structure using these devices. 

The general purpose I/0 port consists of eight lines, each of which 

can act as either an input or an output. As an input, each line can detect 

the state of one switch or can detect one bit of data. As an output, each 

line can control one light, solenoid, etc. or can provide one bit of data 

to a peripheral device. If this technique is used in peripheral control, 

the operation of each line is totally defined in the system program. 

For most systems, the general purpose interface device provides more 

than adequate speed and flexibility to solve the entire peripheral inter- 

face problem. Usually, a cost savings can be realized because of the re- 

duced component cost and the necessity of stocking only one type of inter- 

face device. In addition, use of the general purpose peripheral interface 

device allows the designer to tailor the operation of the interface device 

to fit the problem at hand. 

The ultimate component selection must be preceded by a study of each 

section of the system input/output structure and a study of the overall sys- 

tem performance. Ultimately, the set of general purpose and special purpose 

peripheral interface devices selected for a system must be chosen to mini- 

mize total cost while assuring satisfactory system performance. 
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Processor speed is a function of two things. The first is simply the nun- 

ber of instructions required to perform the desired operations. The second is 

the percentage of processor time required to service interrupts. The typical 

system may employ several interrupt signals which occur at fixed intervals. At 

times, these may be combined with other interrupts being generated by a periph- 

eral device. It is important that the total service time for these interrupts 

does not exceed that allowable and that the time available to the processor for 

executing the main program is sufficient to allow the system to operate at its 

required speed. 

During the system configuration process, detailed system programs need not 

be generated. However, it will be necessary to write small portions of the 

software to verify the speed of execution and to assure proper operation of the 

total system. 

This chapter will discuss special techniques for the control of the various 

components which may be included in a microcomputer system, as well as techniques 

for controlling peripheral devices which are attached to the system. A discus- 

sion of programming techniques which can be used to optimize the total system 

performance is contained in the Programming Manual. 

2.2.2 The Special Purpose Peripheral Interface Device 

The special purpose, dedicated I/0 device must also be considered in 

any microcomputer design. These devices are designed to completely handle 

a single well-defined problem; for example, driving a particular printer, 

handling a particular type of communications line or driving a scanned dis- 

play. These special purpose devices are designed to totally handle their 

particular task with very little help from the processor. 
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The primary advantage of this type of interface device is that it 

requires an absolute minimum amount of attention from the processor. The 

major disadvantage of special purpose I/0 is increased component cost. The 

total production volume for these devices is less than that of the more 

universal I/0 chips and also the total chip size is usually greater. 

The use of special purpose peripheral control devices will not be 

discussed in this manual. Instead, a detailed study will be made of the 

more general problem of configuring the 8-bit bi-directional peripheral 

port. In addition, this chapter will cover some special techniques which 

can greatly enhance the power of this type of interface device. 

2.2.3 Configuring the General Purpose I/0 Port 

The 8-bit peripheral control port included on the MCS6520 and the 

MCS6530 allows each line to be programmed to act as an input or an output. 

This is accomplished when the processor writes a pattern of 1's and 0's 

into the data direction register. Writing a 1 causes the pin to become an 

outpui, and writing a 6 causes it to act as an input. Aithough this opera- 

tion is normally performed only during system initialization, the ability 

to do so under program control allows some very important peripheral con- 

trol techniques. An example of this is described below. 

The process of configuring the general purpose I/0 port involves 

first examining the peripheral devices to analyze the various control in- 

puts, switches, sensors, data signals, etc. which must be handled by the 

microprocessor to properly control the device. Each function must then be 

assigned to a line on the I/0 port. The ultimate goal of this process is 

the creation of a list of I/0 pins, the function of each pin, and an indi- 

cation of whether each pin is to be an input or an output. 

Since each line is capable of operating as an input or an output, 

and since there is very littie to differentiate one iine from any other, 

the actual assignment can be made fairly late in the system development 

cycle after consideration of software techniques and printed circuit board 

layout. In fact, software considerations may be the only thing which dic- 

tates that a signal be connected to one pin or another. 

Developing a thorough understanding of the software in the MCS6500 

systems will require a detail study of the Programming Manual. However, 

several operations which can be performed by the processor and which affect 

the assignment of inputs and outputs will be discussed briefly here. 
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2.2.3.1 Assignment of Outputs 

A major factor in the assignment of output pins can be the ability 

of the MCS650X processor to increment and decrement memory. Since the 1/0 

port is treated as a location in memory, this incrementing and decrementing 

can be used to rapidly set and clear the low order bit in this memory loca- 

tion. This is illustrated in Figure 2.1. 

Note that this does not affect am 

it is used properly as shown. This operation can be performed more rapidly 

than several other software techniques which can be used to affect a single 

bit. Therefore, control of a single indicator, data line, etc. can be 

greatly enhanced by putting it on the low order bit of an I/0 port. This 

is the reason the low order bit of both the MCS6530 peripheral ports (PAO 

and PBO) provide the ability to drive transistors directly. In many appli- 

cations, a simple transistor attached to one of those pins would provide 

very convenient control of a motor, lamp, etc. 

The ability of the microprocessor to shift data in memory can be 

another very important factor in the assignment of outputs. Operations 

which require sequential strobe signals can be controlled conveniently by 

shifting a single high (or low) signal from pin to pin under software con- 

trol. The specific choice of pins can greatly enhance the ease with which 

this signal is controlled. 

2.2.3.2 Assignment of Inputs 

In general, the processor deals with the input data from switches, 

keyboards, etc. by reading the data on the I/0 port into the internal regis- 

ters of the processor (usually the accumulator) and using the resulting con- 

dition of flags in the Processor Status Register to control the program 

which is executed. During this transfer process, the N flag in the Proces- 

sor Status Register is set equal to the high order bit (bit 7) of the word 

read from the I/0 port. This N flag can then be used to cause the processor 

to execute different sections of the program (See the Programming Manual, 

Chapter 4, for a detailed discussion of Branching). Likewise, by perform- 

ing certain instructions, the V flag in the Processor Status Register can 

be set equal to bit 6 on the I/O port. This flag can then be used to 

affect the program which is executed. 

This operation of setting the internal flags from bits 6 and 7 of 

the memory word means that making these two lines inputs on an 1/0 port 
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will allow very convenient testing of the condition of the switches, 

sensors, etc. attached to these inputs. If more than two input signals are 

to be attached to a port, the additional inputs should be piaced on bit 5, 

then bit 4 and so on. The processor can then perform operations which 

shift the lower order bits into bit 7 one at a time and sets the N flag 

equal to this bit. After each shift the N flag can be used to determine 

the actual program which is to be executed. (See the Programming Manual 

for a discussion of the Shift instructions.) 

From the above example, one should conclude that the assignments 

which the designer makes will be very much a function of the software tech- 

niques which will be employed in controlling each line. It is very import- 

ant that the designer be familiar with these techniques and that he docu- 

ment the techniques which he has in mind when making the assignments. This 

is particularly important when the system program is to be written by some- 

one else. Also, it is important that those doing the system development 

work constantly review the I/0 structure to optimize the software in- 

volved as the system program is written. 

i) NO ‘a Power-On Considerations 

Chapter 1, Section 1.3.3 discusses the operation of the system RESET 

function. Reference is made to the fact that this can be used to assure 

that all I/0 lines come up in a known state when power is applied to the 

chip. Although this is a very important function, the designer must assure 

himself that this RESET state does not adversely affect the peripheral 

devices. This section describes some of the problems which can be encoun- 

tered when the system is reset and discusses several techniques which can 

be used to assure smooth power-up operation. 

The I/0 lines of the MCS6530 and MCS6520 all enter the input state 

when the reset line goes to GND (< 0.4V). For the MCS6530 I/0 lines, and 

for the Peripheral A port on the MCS6520, these pins will go to +5V DC (Vdd). 

This is due to the output structure on these pins. When these lines are in 

the input state, the output switch becomes an open circuit but the pull-up 

device continues to supply current to the pin. 

Figure 2.2 shows a peripheral port which is configured to drive two 

solenoids. These solenoids can be controlled properly after the system is 

initialized; however, when the manual reset switch is activated, both 1/0 
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lines enter the input state, the transistors saturate (close) and the sole- 

noids are activated. This can be catastrophic in most mechanical subsys-— 

tems, so it is important that this potential condition be understood and 

prevented. Figure 2.3 shows two satisfactory solutions to this problem. 

The first, Figure 2.3a, requires that a "0" be written into the output line 

by the processor to actuate the solenoids. This assures that the solenoids 

Fe witch is pressed. Kn ill not be powere he manual reset 

However, it does introduce another potential problem. When the reset line 

on the peripheral interface device goes low (« 0.4V), the contents of both 

the Peripheral Data register and the Data Direction register are cleared to 

zeros. If the Data Direction register is set to 1's, both solenoids will 

immediately actuate due to the 0 stored in the Peripheral Data register. 

This can be avoided completely if the system software first sets the bits 

in the Peripheral Data register to a 1 and then sets the Data Direction 

register to al. The 1/0 pin will go high when the reset switch is actuated 

and will simply stay high through the initialization routine. 

Figure 2.3b illustrates a solution which may be more applicable to a 

large system or a complex peripheral. In this approach, a separate output 

line is used to apply power to the peripheral device. The power to the 

entire peripheral or to just the critical elements is kept off until the 

entire system is initialized and is ready to run the system program. 

On the MCS6520 Peripheral B port, the I/0 lines are open circuit 

(high impedance) in the input state. As a result, the configuration in 

Figure 2.2 will not cause the same problem on the MCS6520 Peripheral B port 

as would be expected on the MCS6530. In the input state, the I/0 pin is 

incapable of sourcing any more than a few microamps. 

However, if one were to use a solenoid driver as shown in Figure 2.4, 

the TTL input structure on the drivers would interpret the high-impedance 

state as a logic 1 and would actuate the solenoids. Both the solutions in 

Figure 2.3 would be satisfactory in this case. However, the transistors 

are connected to the TTL buffer. In addition, the extra output shown in 

Figure 2.3b, controlling power to the peripheral device, could actually be 

used to enable the solenoid drivers if an enable input is available to 

these devices. This configuration is illustrated in Figure 2.5. 
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2.2.5 Handshaking 

The MCS6520 provides both interrupt control and data transfer con- 

trol capability. The technique for controlling the transfer of data be- 

tween the processor and a peripheral device is referred to as handshaking. 

In this procedure, each device (the processor or peripheral) is capable of 

signalling the other that its operation is complete. The sequence differs 

somewhat for transfers into or out of the processor, so they will be dis- 

cussed separately below. 

2.2.5.1 Handshaking on Data Transfers from the Processor 

The transfer of data out of the processor into a peripheral device 

is performed by first writing the data into the data register within the 

MCS6520. This data then appears on the peripheral output lines where it 

can be read by the peripheral device for storage, display, etc. 



Control of this data transfer by handshaking requires first that 

the processor signal the peripheral device that data is available on the 

I/O port. The peripheral device then reads this data and signals to the 

processor that the data has been taken and that new data can be made avail- 

able. The processor then makes new data available and the cycle is re- 

peated. 

As described in Chapter 1, the Peripheral B Interface Port on the 

MCS6520 is designed to perform handshaking on WRITE operations. The CB2 

peripheral control line can be programmed to act as an output which goes 

low each time the processor writes data onto the Peripheral B I/O port. 

This is the signal which is used to tell the peripheral device that data is 

available on these output lines. 

The CB2 output line will stay low until the peripheral device sig- 

nals the processor that the data is taken. This is accomplished by inter- 

rupting the processor through the CBl interrupt input. 

The sequence which takes place during the "WRITE" h 

operation described above is shown in Figure 2.6. 

2.2.5.2 Handshaking on Data Transfers into the Processor 

The Peripheral A I/0 port on the MCS6520 is designed to handshake 

on data transfers from the peripheral device into the processor. In this 

sequence, the peripheral device must signal the processor that data is 

available and the processor must signal back that data was taken. This is 

basically the same sequence as that performed in the previous operation. 

The CAl interrupt input is used to interrupt the processor to indicate that 

there is data available on the Peripheral A I/0 port. The peripheral de- 

vice must then hold that data there until the processor reads it into its 

internal registers. When the processor reads the Peripheral A I/O port, 

the CA2 peripheral control line goes low to signal to the peripheral device 

that the data has been taken and new data can be made available. This en- 

tire sequence is shown in Figure 2.7. 

The handshaking operations described above can be an extremely 

powerful technique for interfacing data storage devices or, in general, any 

device which must transfer blocks of data and which has a variable re- 

sponse time. If the processor cannot predict the speed with which the 
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peripheral takes data, for instance, it must rely 

signal that it has done so. 

Initiating the data transfer sequence is 

through a set of I/O lines separate from the port 

on the peripheral to 

usually accomplished 

rth to Wii shlid s transferring FAs 

the data. However, once the sequence is under way, the processor must 

deal with the peripheral device only when an interrupt has occurred. 

This allows the processor to execute the primary system program while 

still servicing these peripheral devices. 

-96- 



ENABLE | | | | | | | | | | | | | | | 

1 (a 

ADDRESS 
_ Ge Ce 

— 
R/W ‘| | 

2 
DATA BUS {5 ¢§ 

a PERIPHERAL 5 
DATA a 

1. Processor puts out address of peripheral device and changes R/W 
signal to write enable (low). 

2. During phase two processor puts out data on Data Bus. 

3. Data from the processor is accepted by the MCS6520 on the 
falling edge of the enable clock. 

4. Peripheral Interface device now begins the handshake by signaling the 
peripheral device that data is available to read on the output 

5. When the external peripheral device reads the data on the output 
port it will respond by a change in CBl. 

6. This change in CBl is followed by a positive transition of CB2 
signalling the processor that data was accepted. 

Write Handshake Sequence 

FIGURE 2.6 

~97.~ 



ENABLE tL La TELE Ly 

SNES 

PERIPHERAL 1 
DATA 9 

ES 

CAI 2 x 

——_—_—_—_—_—____ OOo 

IRQ 4 | 
aS 

ten el 

ADDRESS s\ 
ee 

R/W 5 
| a 

DATA BUS = —————___ re 

Data is put out by peripheral device. 

peripheral interface device is signaled by CAl that the 
data is ready to be read at the input port. 

is put in the high state. 

processor is signalled that new data is ready to be read 
by a low level on the IRQ line. 

processor begins servicing the Interrupt request and during 

routine the processor will put out the read signal and the 

Address of the Peripheral Interface device. 

. The Peripheral interface will transfer the new data from the peripheral 

device to the microprocessor through the data bus. 

1. New 

2. The 

new 

3. CA2 

4. The 

5. The 

the 

6 

7 . When Data has been transferred the peripheral device will be signaled 

by CA2 going low. 

Read Handshake Sequence 

FIGURE 2.7 
-98- 



2.3 CONFIGURING THE INTERFACE BETWEEN THE MICROPROCESSOR AND THE SUPPORT CHIPS. 

The system block diagram (Figure 2.8) shows the basic data paths which al- 

low the MCS6500 system to operate. Data Bus, Address Bus, R/W signal, etc. are 

shown as simple connections between the various chips in the system. Although 

these data paths will exist in any system, no matter how complex, each element 

of the microprocessor interface must be examined to assure that each chip is 

properly driven with signals which meet all specifications for the device, to 

assure that the inter-chip timing is proper and to assure that the overall sys- 

tem is operating as required. 

2.3.1 Assignment of Addresses in the MCS6500 System 

The only method which the microprocessor has for selecting between 

the various RAMs, ROMs, etc. in a system is through the address output 

lines. For this reason, the designer must use these lines very carefully 

to achieve minimum system cost and to assure satisfactory system perfor- 

mance. 

Before looking at how the address lines can be configured to minimize 

total system cost or program execution time, the designer should understand 

how the binary value associated with each address line is related to the 

total address space available to the microprocessor and how the AND func- 

tion of various address lines can be used to select large blocks of ad- 

dresses. Figure 2.9 illustrates the state of the three high-order address 

lines for the entire address space available to the MCS650X. Note that the 

highest order address line is a logic 1 for exactly half of the available 

address. The AND function of the two highest order address lines is a 

logic 1 for one-fourth of the available addresses, and so forth. Figure 2.9 

also illustrates severai AND functions derived from the three highest order 

address lines. Each is true for a different block of the available ad- 

dresses. 

Generation of the AND function of various high order address lines 

is extremely important because of the chip select techniques employed on 

the processor support chips. As described in Chapter 1, Section 1.5.2.4, 

the MCS6520 has three chip-select lines. The entire chip is selected for 

reading or writing data when CS1 and CS2 are high (> 2.4V) and CS3 is low 
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MICROPROCESSOR HIGH ORDER ADDRESS LOGIC “AND” FUNCTION 

ADDRESS ADDRESS ADDRESS LINE  AHeAH-1 AHeAH-IeAH-2 
SPACE LINEAH LINE AH-1  AH-2 

0 0 0 0 9 
0 
0 
1 
1 

0 1 
1 0 

0 
0 
1 
1 

0 i i 

1 0 0 
0 
0 
1 
1 

0 1 0 0 
1 0 1 0 

0 0 

: 1 
; 1 

1 1 1 1 1 

Example of “AND” Function Using High Order Address Lines 

FIGURE 2.9 
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(<< 0.4V). Selection of the address lines which enable the various chips 

in the system is a very basic but very important part of the system con- 

figuration task. 

It is important to note here that very few microprocessor-based sys- 

tems actually require that the processors be able to access a full 65,536 

words. In fact, most systems can be programmed in less than 2,000 words 

for program and data memory. The full address space is made available pri- 

marily because it allows the configuration of systems with an absolute 

minimum of separate decoding chips between the processor and the support 

chips. It is possible to assign any block of address to each type of chip 

(RAM, ROM, peripheral interface chips, etc.) in the system. However, each 

of the assigned addresses must be mutually exclusive. Only one of the sup- 

port chips should be selected for every address used in the system program. 

2.3.1.1 ROM Address Assignment 

The assignment of ROM addresses is dictated by the fact that the 

interrupt and RESET vectors must be located in the 6 high-order words in 

memory. These are fixed vectors and must be stored permanently in these 

locations. For this reason, the program memory (usually ROM) is usually 

assigned the high order addresses. In fact, the recommended procedure is 

to use Ai5 (Ai2 for MCS6504 and Aili for MCS6503 and MCS6505) to select 

program ROM. 

2.3.1.2 RAM Address Assignment 

There are several factors which determine the location of the RAM 

in an MCS650X-based system. Data stored in memory under control of the in- 

ternal processor Stack Pointer will always go into Page One (ADH = 01). 

Also, the entire set of Page Zero addressing modes relies on there being 

data storage RAM in Page Zero. For this reason, the RAM in a MCS650X~based 

system should be placed in the low order addresses in memory. 

With the RAM in low order memory and the ROM in high order memory, 

the peripherai interface devices must go somewhere in between. This is 

accomplished in Figure 2.10 by using A1l5 - Al4 to select ROMs, Al5 to select RAM, 

and A15 - Al4 to select all peripheral interface devices. This allows dif- 

ferentiation between the types of support chips. The addressing structure 

can be completed by allowing for selection of each chip in the groups. 
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“The addresses which select the various registers, peripheral 

ports, etc. within the peripheral interface devices normally used will not 

be sequential. For this reason, it is normally recommended that the tech- 

nique shown in Figure 2.10 be used to differentiate between the peripheral 

interface chips. This allows selection of 12 devices with no decoding in a 

MCS6501~ or MCS6502-based system, up to nine MCS6520 Qu evices in a MCS6504- 

based system, and up to eight devices in a MCS6503 and MCS6505-based system. 

2.3.2 Additional Address Assignment Techniques 

In many systems, the techniques illustrated above may not represent 

the best solution to the system problem. This is particularly true if pro- 

gram execution speed is a primary consideration. The time required to 

access the peripheral devices can be reduced by putting these devices in 

Page Zero. The entire set of Page Zero addressing modes can then be used 

fo as Oo access th a addition, the polling of the MCS6520 control 
~_— 4J..4 ~.-+ 

to access tnese devices. ir a 

registers during interrupt servicing can be facilitated greatly by putting 

the control registers in sequential addresses. These registers can then be 

accessed using the Page Zero, Indexed addressing mode described in the Pro- 

gramming Manual. The address interconnect which allows this is shown in 

Figure 2.11. Note that this implementation requires external address de- 

coding chips but for the system requiring it, this incremental cost will 

result in higher operating speeds. 

The system designer must become familiar with the addressing lines 

and their effect on the address space available to the processor. Even 

more important, there is a significant relationship between software and 

hardware in microprocessor systems and a full understanding of both can 

allow optimization of the trade-off between speed and cost for the system 

under design. 

2.3.3 Interrupts 

The basic concept of interrupts is introduced in Chapter 1, Section 

1.3.2 of this manual. However, little is said there about the hardware and 

software techniques which are required to assure proper implementation of 
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the interrupt system. This section is designed to introduce the designer 

to the detaiis of interrupts and interrupt servicing techniques. 

2.3.3.1 Interrupt Prioritizing 

Chapter 1 makes reference to various techniques for hardware 

prioritizing of interrupts to allow more rapid servicing of interrupts. 

The goal of this hardware is to allow the processor to go directly to the 

program which services the highest priority active interrupt without taking 

the time to poll each interrupting device. 

All hardware prioritizing techniques are based on the "priority 

encoder" shown in Figure 2.12. This device has eight inputs which are 

assigned a priority level from one to eight and generates a three-bit bi- 

nary code corresponding to the highest priority active input signal. 

The generation of this three-bit code is in reality a trivial task 

for the designer. However, relating this code to the address of the corre- 

sponding interrupt service routine is much more difficult and represents an 

opportunity for creativity on the part of the designer. Several solutions 

will be illustrated here todemonstrate what can be done. These are cer- 

tainly not assumed to be the only solutions. Each system must be considered 

separately to assure that the implementation chosen is as close to optimum. 

as possibile. 

2.3.3.2 Example 1: Selecting the Interrupt Vector 

The final step of interrupt response within the processor is the 

fetching of an interrupt vector from two fixed addresses in memory. The 

interrupt vector located in these fixed addresses identifies the address of 

the software which the processor executes to poll the interrupting devices. 

Instead of pointing to the polling routine, it would be much faster to go 

directly to the software which actually services the interrupt. This re- 

quires a unique vector for each interrupt. 

The technique illustrated in Figure 2.12 assumes that the inter- 

rupt vectors are located in ROM at addresses below that normally assigned 

to the interrupt vector. The decoder detects the fact that the processor 

is reading FFFE or FFFF. At this time the address inputs AD1, AD2 and AD3 

into the ROM are driven from the priority encoder. Instead of accessing 

FFFE or FFFF, the interrupt vector will come from two addresses selected by 

-106- 



ING Cs 
Al4 
Al3 

A12 

All 

A10 

Ag [ge 
A8& a ‘ coe 
A6 “ PCE 
A4 

A3 *O 7 8 

A2 

Al 

AO 

a 
QUAD 

DATA 

SELECT 

MICROPROCESSOR 
PRIORITY 

ENCODER 

| th Lt | 
(EY 
EEE 
eer 

INTERRUPT INPUTS 

Selecting the Interrupt Vector 

FIGURE 2.12 

-107- 



the priority encoder. The actual hardware involved is quite simple and the 

interrupt response time is an absolute minimum. 

2.3.3.3 Example 2: Using the Processor Software Power 

These several solutions to the vectored interrupt problem take ad- 

vantage of certain instructions which can be performed by the processor. 

The first of these uses an instruction called the Jump Indirect. This in- 

struction causes the processor to begin executing the program located at 

that address contained in two sequential memory locations. 

As in Example 1, the three-bit output from the priority encoder 

becomes part of the address of the interrupt software. If the output of 

the priority encoder is connected to the inputs of a peripheral interface 

device, the processor can then perform a Jump Indirect operation using the 

address on the two peripheral I/0 ports. This is shown in Figure 2.13. 

Another solution which takes advantage of the processor software 

is shown in Figure 2.14. Once again the output of the priority encoder is 

connected to the inputs of a peripheral I/0 port. However, in this ap- 

proach, the priority encoder is connected to the low order bits and the 

other bits can be used as control or input lines for other functions. 

In this method, the three bits from the priority encoder will be- 

come part of an address established in memory. This address will then be 

used in a Jump Indirect instruction as before. This operation is detailed 

in Figure 2.15. 

2.3.4 The Application of RDY to Controlling the Memory Interface 

The ability to stop the microprocessor can be extremely important 

when using memory devices which are not directly compatible with the 

MCS650X family. 

The RDY line on the MCS6501, MCS6502 and MCS6505 can be used to stop 

the processor in any "non write" cycle, i.e., any cycle in which the pro- 

cessor is not attempting to write data into memory. The processor can be 

stopped for any number of clock cycles, from one cycle for interfacing with 

slow memories to many cycles for DMA applications and for single cycle exe- 

cution. 

2.3.4.1 Interfacing Slow PROMs 

One of the principal applications of RDY is in the control of 

light-erasable PROMs or EAROMs. These devices generally have longer access 
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times than that required by the microprocessor when operation at 1 MHz 

clock frequency and are incapable of making data available on the data bus 

within 100 nanoseconds of the end of the Phase Two ciock puise. The Phase 

Two clock pulse is used to latch data or instructions on the data bus; 

therefore, if the data is not available at the correct time, the processor 

must be held up for one full cycle. The instruction will then be latched 

on the following Phase Two pulse. Execution of the instruction will then 

proceed during the next cycle. Suggested logic for performing this func- 

tion is shown in Figure 2.16. 

Note that the data present on the data bus during the @2 clock 

pulse after RDY goes high is the data that will be used in the instruction 

execution which takes place during the following cycle. 

2.3.4.2 Direct Memory Address (DMA) Techniques 

Transfer of data from peripheral storage devices into the micro- 

computer data memory (RAM) can normally be handled one byte at a time under 

control of the microprocessor. However, in large data terminals, control 

systems, etc. the primary data storage device may be a high-speed tape or 

disk. In systems such as these, the data transfer from the storage device 

into memory must be performed at speeds greater than the processor can 

handle. The control of the transfer must be performed outside of the pro- 

cessor in a separate controller and the peripheral device must gain direct 

access to the system RAM. 

Direct Memory Access requires primarily that the processor have no 

need to access the memory involved. This is generally assured by stopping 

the processor completely. The DMA controller must then gain access to the 

R/W line and both the address and data busses on the memory unit. 

Provision for stopping the processor is available on the MCS6501, 

MCS6502 and MCS6505. This is accomplished by pulling the RDY line on the 

processor to GND (< 0.4V). The processor will stop in the first non-write 

cycle with the data bus in the high-impedance state. After the processor 

has stopped, the DMA controller must provide the address and data for the 

memory and must control R/W if data is being transferred into memory. 

Providing addresses for the memories can be accomplished by gating 

addresses from either the DMA controller or the microprocessor into the 

memories. This can be accomplished very easily with a Quad 2-input data 
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selector. During the DMA operation, the addresses fed to the memories are 

those generated by the DMA controller. After the DMA operation is complete, 

the input select signal to the data selector is inverted and the addresses 

generated by the processor once again determine which memory word is being 

accessed. The R/W line to the memories can be controlled in the same way 

as the address lines. 

The data bus must be controlled in a somewhat different manner. 

This is necessitated by the fact that these lines are "bi-directional"; the 

data bus pins on the processor and the support chips act as both an input 

and an output. The output buffers in each of these chips are capable of 

entering a high impedance state to allow any of the devices to drive the 

bus during data and instruction transfers. For this reason, a bi-direc- 

tional, "three-state" bus extender is required to interface the DMA con- 

troller to the system data bus. The logic necessary to provide full address 

bus and data bus control for DMA applications is shown in Figure 2.17. 

The MCS6501 provides a Bus Available output to signal the DMA con- 

troller that the processor has stopped and that the DMA controller can pro- 

ceed to access memory for reading and writing data. This signal will go 

high during the Phase Two clock in the first Read cycle (R/W = 1) which 

follows RDY going low. This will occur immediately if RDY is pulled to GND 

(< 0.4V) during a Read cycle. The discussion of the processors in Section 1 

describes this in detail. 

The MCS6502, MCS6503, MCS6504 and MCS6505 do not make available 

the Bus Available signal. However, these processors still stop in the 

first non-write cycle. For this reason, the logic shown in Figure 2.17 

should be used to generate a Bus Available signal for the DMA controller. 

2.3.4.3 Control of Dynamic RAMs in the MCS6500 System 

For systems which must contain a large quantity of Read/Write 

memory (RAM), the 4096-bit dynamic RAMs can provide the required storage 

with a minimum number of parts. Currently available dynamic RAMs are cap- 

able of storing four times as much data as similar static devices. How- 

ever, there is one major drawback to these devices--they must be refreshed 

periodically. For most devices currently available, this refresh period is 
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requires 32 Read operations which can be performed all at once every 2 

milliseconds, or 1 approximately every 64 microseconds. 

Unless a separate controller is used to perform this refresh 

operation, the use of dynamic memories can be very detrimental to system 

performance. 

As with any Direct Memory Access, the processor must be stopped to 

assure that the processor and the DMA controller are not attempting to 

access the memories concurrently. The RDY input provides this capability. 

A counter operating directly from the system clock will provide a very con- 

venient refresh signal. Each time the counter goes through a count of 63, 

a "refresh request" pulse is generated. The actual memory refresh opera- 

tion must take place during a Read operation with the processor stopped for 

1 cycle. Determining when the processor has stopped is exactly the same 

problem as in DMA operations. The MCS6501 will generate a Bus Available 

pulse when the processor has stopped. In the other processors, the control- 

ler must pull the RDY line low and must then examine the R/W line to deter- 

mine when the processor is in a Read cycie. 

The specific operation performed during the refresh cycle is a 

function of the devices being used. However, it should be noted the time 

available for refreshing the memory is "N - 1/2" cycles, where N is the 

number of cycles that the processor is stopped. This formula is based on 

the fact that the first half cycle is lost due to the fact that BA does not 

go high until §2 in the MCS6501 and that the state of the R/W line cannot 

be considered valid until $2. Control of the memory address lines must be 

returned to the processor at the beginning of $1 if the memories are to 

have a full cycle to make valid data available on the data bus. This leaves 

one-half cycle available to perform the refresh operation if the processor 

is stopped for one cycle. A full 1-1/2 cycles can be made available by 

stopping the processor for two cycles. This iatter implementation is more 

compatible with most dynamic RAMs currently available. 

As described above, a primary problem in the implementation of 

dynamic RAM systems is knowing when the processor has stopped. A full one- 

half cycle is required in the implementations described above. The MCS6502, 

however, provides a signal which can be used to predict that the processor 

will stop in the very next cycle. This is the SYNC signal. It is impossible 
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for a Write operation to immediately follow an instruction fetch cycle. 

This allows the memory refresh controller to assume control of the address 

lines at the beginning of that cycie instead of after the trailing edge of 

Ol. 

The RDY iine is puiied iow on §1 and the processor is guaranteed . 

to stop. Control of the address lines is returned to the processor on the 

next $1 and RDY is set high at the same time. The result is the refresh 

logic had a full 1 cycle to refresh the memories and the processor lost only 

i cycle of execution time. A suggested configuration for this control logic 

is shown in Figure 2.18. 
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2.3.5 Hold-Time Control--MCS6501 

The data bus hold time required by the MCS6500 family parts is de- 

fined in Chapter 1. Each chip in the system requires that the data on the 

data bus be held for 10 nanoseconds past the trailing edge of the Phase Two 

clock pulse. Also, each device is guaranteed to hold data for this length 

of time to assure proper operation of the other devices in the system. 

This only assures that the family parts will work together. Operating with 

other RAMs and peripheral devices requires that a careful study be made of 

the timing requirements. This section discusses techniques for properly 

interfacing RAMs which require more than 10 ns hold time guaranteed by the | 

processor. These techniques are applicable primarily to the MCS6501 since 

this device uses the input clocks and the DBE input. . 

The data which is to be written into memory is actually available on 

the inputs to the processor data bus buffers from the beginning of the Phase 

One clock pulse. This data is normally gated onto the bus during Phase Two. 

However, if greater hold time is required, the designer can take advantage 

of the fact that this data can really be gated out during Phase One. This 

requires that a delay be provided between the Phase Two and Phase One clock 

pulses. The DBE output can then be connected to a Phase One pulse to cause 

the data to remain on the bus past Phase Two pulse which is used to latch 

data in memory. This timing is shown in Figure 2.19. 
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2.4 ADDITIONAL SYSTEM CONSIDERATIONS 

After the basic system configuration is complete, extensive breadboarding 

and testing is usually required before the design is finalized. However, this 

breadboarding and evaluation must be preceded by a complete evaluation of the 

cost and performance of the proposed design to assure that the various goals of 

the project will be met. 

The first step in evaluating the design is to estimate the amount of ROM 

and RAM which will be required and to estimate the number and type of interface 

devices required to control the peripherals 

2.4.1 Peripheral Interface Devices 

The number and type of peripheral devices can generally be estimated 

very accurately. However, it is important to keep in mind that these esti- 

mates must be subject to review after a full analysis of system performance 

is completed. The designer may find it necessary to use a special-purpose 

interface part or to redesign the I/0 structure if the evaluation of system 

performance reveals that the system cannot operate at the required speed. 

Use of special-purpose peripheral interface parts will reduce the number of 

tasks which must be handled by the processor and consequently can increase 

the overall system speed, but this generally involves additional component 

cost. 

Likewise, the use of a fully vectored interrupt can lead to increased 

performance at increased cost. The goal of any design program must be to 

meet all the system performance at the minimum possible cost. 

After the various peripheral devices in the system have been evalu- 

ated to determine the number of inputs and outputs required, the total re- 

quired by all peripherals can be divided by 16 to determine the number of 

devices required. This is a good first approximation which will be re- 

evaluated as the system development progresses. 

2.4.2 RAM 

The evaluation of the amount of RAM required by the system is a some- 

what more difficult nrohlem than estimation e 
art nh 

Se eee rc == ee re . wesop ae eral dey 

due primarily to the fact that much of the RAM is required by the system 

software as working storage, such as storage of immediate results in 
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arithmetic operations. Since the system program will probably not be 

written when these estimates are first attempted, the probability of error 

in this portion of the estimate may be fairly high. 

In addition to working storage, the RAM must provide storage for: 

i. The Stack; this is described in the Programming Manual. 

2. Peripheral input data storage. 

3. Peripheral output data storage. 

Items 2 and 3 above can be evaluated quite accurately since a de- 

tailed analysis of the peripheral devices has usually been completed when 

these estimates are first attempted. In general, a block of RAM must be 

made available for each peripheral device. The amount of RAM required for 

each is a function of the type of peripheral device being interfaced and 

just how the device is to be controlled. 

The amount of RAM required by the stack is a function of both the 

interrupt structure and the system software. As a result, an estimate of 

this requirement must be based on the system programmer's best estimates 

of his requirements. This should be combined with an estimate of the re- 

quired working storage and the peripheral data storage requirements to ob- 

tain an estimate of the total system RAM. 

2.4.3 ROM 

The amount of ROM required in a system cannot be determined accu- 

rately until the system program is completed. However, by partitioning the 

system program into definable pieces, an estimate can be made of each task 

and the total can be obtained of the ROM required by each section. 

Most programs consist of easily defined sections such as the software 

for each peripheral device, arithmetic routines, etc. These are the pieces 

which should be examined separately to estimate the ROM required by each. 
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2.5 EVALUATING SYSTEM PERFORMANCE 

As discussed in the previous section, the peripheral interface structure 

for a system is fairly easy to configure if one assumes that MCS6520-type de- 

vices are used. However, before going too far into hardware construction, it is 

important that the total system performance be evaluated to minimize the proba- 

bility that major problems will arise in the later stages of the design. 

Evaluating system performance involves first determining whether or not 

the processor is capable of processing all interrupts with the speed required 

and then determining that the processor has sufficient time to perform non- 

interrupt operations. 

The prioritized interrupt structure assumes that at times, more than one 

interrupt will occur and that there will be delays encountered in servicing some 

interrupts caused by the presence of other interrupts. This structure will per- 

form satisfactorily if these delays are not too great. 

The interrupt processing time should be evaluated starting with the highest 

priority interrupt, then going to the next highest priority, each time keeping 

in mind the total time which can be lost due to concurrent higher priority 

interrupts. Each time an interrupt is examined, the worst microprocessor re- 

sponse time which can be encountered should be estimated. If this time is still 

adequate for the function being handled by the interrupt, that aspect of the 

system operation can be expected to perform satisfactorily. 

The ability of the MCS650X microprocessors to handle interrupts quickly and 

conveniently represents one of the real strengths of this microprocessor family. 

However, in any system being developed, it is important that the percentage of 

processor time spent servicing interrupts not be so large that the internal data 

handling, arithmetic operations, etc. cannot be executed properly. 

Since the interrupts are usually asynchronous and are not related directly 

to the main line program, the time lost to interrupts can usually be viewed as 

an average percentage of the total time. The speed with which the main program 

can be executed will be reduced by this percentage. 

The interrupt service routines are usually short and easy to evaluate. 

However, the main program is much more difficult to estimate. Fortunately, it 

is also usually much less critical. Those operations which must meet a 

-121- 



particular speed requirement can be examined in detail by the programmer to de- 

termine the execution time. This estimated execution time must then be reduced 

f= to allow for the (tT ct ime lost to interrupts. 

The final step to assuring satisfactory system performance is a worst-case 

analysis. This is to determine if there are any places in the program where 

worst-case interrupts can cause excessive delays in the execution of other pro- i 

grams being executed. Although the effort involved fos n a complete worst-case 

analysis is usually excessive, this is one part of the system development task 

which can lead to significantly greater assurance of success for the entire de- 

velopment process. 

-122- 





BRINGING UP THE MCS6500 MICROCOMPUTER SYSTEM 

3.0 INTRODUCTION TO MICROCOMPUTER TESTING 

After many hours of planning, hardware construction, and programming effort, 

the microcomputer system designer must face what can be his most difficult task: 

"bringing up" his system. The modern microcomputer with its minimum chip count, 

and its minimum number of control and data lines represents a tremendous advance 

in system design when everything is working properly. However, it can also repre- 

sent a testing nightmare to the designer who is attempting to trouble-shoot the 

hardware and software which constitute the total design. 

A microcomputer lacks many of the things which make testing of conventional 

logic relatively convenient. To begin with, one simply cannot see most of the 

control signals, data transfers, etc. which allow the system to operate. In 

addition, it is impossible to examine directly the contents of the registers and 

latches which store data within the processor. This data can only be examined 

indirectly by looking at the signais on the inputs and outputs to the chip at 

the proper time. 

This problem is compounded by the fact that many programs must be tested 

"dynamically"; i.e., the system must be running at its full operating speed with 

non-recurring events or with a total lack of usable oscilloscope triggering 

signals. 

For these and many other reasons, it is important that the system designer 

build effective testing capability into both his hardware and his software. 

This is particularly true for the pre-production prototypes. When combined with 

the procedures discussed below, this will minimize both the time and the effort 

spent in producing that first operational system. After the program and the 

hardware are completely debugged, many of the testing tools discussed below can 

be removed from the prototype design without affecting system performance. This 

allows the designer to arrive at his final production design very shortly after 

he has proven that the prototypes are operating satisfactorily. 
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3.1 STATIC TESTING 

3.1.1 Introduction 

Static testing, i.e., execution of the program, one cycle or one 

instruction at a time, is the first step in the checkout of any system. 

In this way, the general flow of the program can be examined and for much 

of the program the validity of data transfers into and out of memory can 

be verified. As shown in Figure 3.1, the logic necessary to control RDY 

to allow Single Cycle and Single Instruction Execution is relatively 

simple. This hardware and its use in system testing are discussed below. 

3.1.2 Single Cycle Execution 

The timing required for Single Cycle Execution is shown in Figure 

3.2. In this operation, the RDY line has been brought low (GND) to halt 

the processor. To allow execution of a single cycle, the RDY line goes 

high (+2.4V), for one cycle each time the Single Cycle switch is acti- 

vated. Note that the RDY line goes high while the $), clock is high and 

the internal timing counter advances on the next 9) clock pulse. 

Single cycle operation allows stopping the processor in any cycle 

except a WRITE cycle. This allows detailed examination of all cycles of 

the instruction fetch operation. In addition, it permits detailed examina- 

tion of operand fetches. Thus, it is possible to verify the operation of 

most of the hardware involved in memory addressing and control. It is also 

possible to verify the operation of most of the peripheral interface hard- 

ware. This can greatly reduce the time required to test the full dynamic 

operation of the peripheral device. 

Note that if depressing the Single Cycle switch allows the processor 

to advance into a WRITE cycle, the processor will complete this cycle and 

will then stop in the first READ cycle (R/W = 1) which follows. This tim- 

ing is shown in Figure 3.2. 

Appendix A contains a detailed summary of the data which should 

appear on the address and data lines during each cycle of the MCS6501 and 

MCS6502 instructions. 

Note that the processor often puts out an address and fetches data 

which it ignores. This is an inherent feature of the processor which uses 

a "look ahead" approach to pipelining. Examination of the SYNC signal will 

allow the designer to keep track of exactly when the data fetched from 

memory is utilized within the processor and when it is ignored. 
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A very simple "data trap" can be built into prototype systems to 

allow examination of the address and data generated by the processor during 

WRITE cycles. This trap may latch the contents of both the address and 

data busses or it may latch only the address bus. The iatter can be suf- 

ficient if a separate means of examining data in memory is provided (see 

Section 3.3). <A suggested configuration for the "data trap" is shown in 

Figure 3.3. This circuit can be used to display the contents of the ad- 

dress and data busses for both READ and WRITE cycles. The WRITE data is 

latched and held during the next READ cycle. Depressing the Latch Reset 

switch then opens the inputs to the latches and allows monitoring of the 

subsequent READ cycles. 

3.1.3 Single Instruction Execution 

While it is extremely useful to be able to analyze the execution of 

each instruction in detail, it is often sufficient just to look at the gen- 

eral program flow. This is particularly useful when examining the opera- 

tion of branches and jumps in a program. Single instruction execution is 

designed to allow this capability on the MCS6502 which outputs a SYNC sig- 

nal. 

The operation of the single instruction execution logic is based on 

generation of a SYNC signal within the processor. This signal goes high 

(> +2.4V DC) during each OP CODE fetch cycle. Single instruction execu- 

tion is implemented by using SYNC to force RDY low « +0.4V DC). Under 

these conditions, the processor will always stop with an OP CODE address 

on the address bus and the OP CODE on the data bus. The timing for this 

operation is shown in Figure 3.4. Note that this diagram assumes that the 

processor is stopped in an OP CODE fetch cycle. Depressing the Single 

processor then stops when the next OP CODE is fetched. 
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3.2 DYNAMIC TESTING 

3.2.1 Introduction 

Through static testing techniques, the designer should be able to 

verify the operation of most of his processor interface hardware, such as 

the Bus Expanders and Address Decoders (for selecting ROMs, RAMs, etc.). 

However, this is only a first step to assuring proper system operation. 

Most peripheral devices cannot be properly tested unless the processor is 

operating at full speed. This necessitates full dynamic testing. 

Dynamic testing generally involves causing the processor to execute 

a program loop, i.e., to execute a repetitive sequence of instructions. 

This allows the use of an oscilloscope in examining the processor opera-— 

tion. This repetitive operation can be externally induced through the 

RES or Interrupt (IRQ or NMI) lines, or it can be a part of the program 

being executed. Both techniques play an important role in the system 

checkout process. 

3.2.2 Externally Induced Loops 

The most direct means of causing the processor to execute a loop is 

to drive one of the direct inputs (RES, IRQ or NMI)with a signal gen- 

erator. This technique can be used to trouble-shoot systems which are only 

partially operational since it does not rely on proper execution of a par- 

ticular set of instructions to cause looping to occur. However, this tech- 

nique can only be used if an oscilloscope can be employed in examining 

system operation. To do so requires an effective scope-synchronizing 

signal. For this reason, the following section will discuss not only the 

signals to be tested and the waveforms which one should see but also the 

techniques one may use to assure generation of an effective scope sync. 

Probably the most basic operation performed within the processor is 

the RESET function. Without the RESET hardware and software operating pro- 

perly, the system will never enter its normal operating mode. For this 

reason, the first major function to be tested, both statically and dynam- 

ically, is the RES input. 

A suggested configuration for dynamically testing the RESET input is 

his diagiam, the RESET input is being driven from 

a signal generator. Between the signal generator and the processor is a D- 

type flip-flop to synchronize the chip reset signal to the processor clocks. 
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This synchronizing is extremely important because it stabilizes the data 

being displayed on the oscilloscope with respect to the scope sync. 

The most effective procedure for testing the dynamic operation of 

the RESET function is to reset the system initially at a rate of approxi- 

mately one-fifth of the clock rate. This will allow the processor to 

execute the first few instructions in the reset sequence before being re- 

cycled. The designer can then closely examine the timing of address, data 

and R/W signals. Use of the delayed sweep feature available on most modern 

oscilloscopes will allow examination of any part of the RESET operation. 

When proper operation of the RESET input has been verified, the same 

technique can be applied to both the IRQ and the NMI inputs. Driving either 

of these inputs with a signal generator synchronized to the processor clocks 

will allow a close examination of the dynamic operation of the interrupt 

polling sequence. This provides a very important look at the Peripheral 

Interface selection logic to assure that all peripheral devices are respond- 

ing to the proper address. 

3.2.3 Software Loops 

During system checkout, the designer must verify the operation of 

many simple functions which must all operate properly before the entire sys- 

tem is operational. The use of simple software loops will allow a detailed 

examination of one function at a time. Most importantly, it allows the 

designer to use an oscilloscope to examine events which may occur very in- 

frequently and which are normally very difficult to see. 

The execution of software loop requires the writing of a program 

which ends in a JMP back to the beginning of the program. Once the processor 

enters the loop it will continue to execute the same sequence of instructions 

until the RESET switch is pushed. 

To utilize software loops effectively there must be an event which 

happens only once each time the processor executes the loop. This signal 

can be used to trigger the oscilloscope. Including a single WRITE operation 

in the program allows the R/W signal to be used to trigger the scope. Like- 

wise, careful selection of address in the program will allow use of an 

address line as a scope sync. Finally, lacking anything else, setting and 

resetting a peripheral interface device output pin at the beginning of the 

program provides a very effective sync signal. 
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3.3 SYSTEM DIAGNOSIS USING HARDWARE PROGRAMMER AIDS 

In addition to the techniques described in which the user utilizes oscil- 

loscopes and his own innovative techniques for analyzing data, MOS Technology, 

Inc. makes available to the user several hardware aids which assist in debugging 

of a microcomputer system and also a software aid called the emulator. The 

hardware aids are a Keyboard Input Monitor (KIM), a Teletype Input Monitor (TIM), 

and a Microcomputer Development Terminal (MDT). Each of these aids is designed 

to allow the debugging of microprocessor code without need to resort to scopes 

or other data trapping techniques, but rather attempts to reduce the problem of 

debugging the code to the same techniques that are available on a large computer 

system. . 

The basic assumption of each of these devices, either hardware or software, 

is that the microprocessor system is connected correctly, all the electrical 

characteristics have already been checked and met and that the only problem to 

be solved is one of debugging programs and 1/0 hardware which have been entered 

into the microcomputer. 

Each of the hardware techniques assumes that the user will start his design 

sequence with all of his programming being done in some form of random access 

memory which is loadable from an I/0 device, examinable by the 1/0 device and 

changeable by the I/0 device. This is the normal first step in developing a 

microcomputer system and one that should be used prior to committing any of the 

hardware to PROMs or alterable memory. The only exception to this is if the 

user is taking advantage of the software emulator and if his program is such that 

the emulator can give him a significant degree of confidence in his coding in 

which case the use of the KIM or TIM devices is primarily that of allowing him 

to have final debugging access to his various memory locations. Therefore, the 

common characteristic of all these approaches is that by some technique, in the 

case of the Emulator by reading an input file, in the case of TIM by reading 

in an input tape from the output Cross-Assembler, in the case of KIM loading a 

program into memory by hand, and in the case of MDT either assembling the pro- 

gram or loading input data from the Cross-Assembler, the program has been 

entered into a program storage. Each of these techniques allows the user to 
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initialize various memory and register locations and to "start execution" of this 

program at a memory location. Techniques are implemented which allow the user 

to stop his program at a particular point and analyze the results of the opera- 

tions which have just been completed. If the results are correct, the coding 

between the start point and the stop point is correct. If the coding is incor- 

rect, the user analyzes the data which he displays by use of the I/0 device and 

the hardware or software that interfaces it, and determines by inspection of the 

data and analysis of his coding what error could cause the results detected. 

If the technique of just analyzing coding is not sufficient, each of these 

systems has the’ ability to allow the user to go in and re-execute the code with 

new data or the original data, only stopping at earlier stop points until he is 

able to trap the operation that causes the erroneous data to occur. ‘Both the 

emulator and MDT have additional features which allow the user to analyze the 

operation of instructions as they occur which is very useful in determining 

which part of the program causes operations to be performed incorrectly. 

The normal design cycle should actually include a combination of techniques. 

If the user is not using MDT, then he should write his code on a Cross—Assembler 

and debug much of his loops and non-I/0 programming using the Emulator. The 

Emulator has been designed to allow very easy analysis of data paths, loops and 

performance of program on a non-hardware basis. It is particularly useful for 

the user who is developing routines which have significant loop and subroutining 

or any completed algorithm. 

The use of emulation has the following advantages: 

1. It gives the power of a large machine to allow tracing operations which 

are not very feasible at the hardware level. 

2. It may indicate prior to the time that the hardware is committed that 

more memory or more time is required to perform an operation which may 

dramatically change the hardware implementation which is to be committed. 

In any case, attempting to bring up the microprocessor system without use 

of assemblers and an interface module such as TIM is not the most efficient use 

of the designer's time. 

For the user who is just starting in microprocessors, the KIM technique is 

acceptable because the length and complexibility of the programs to be written 

should be shorter and the user can program directly in Hex and debug using the 

KIM exclusively. 
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3.3.1 KIM--Keyboard Input Monitor 

KIM allows the user to key in Hex values into specified memory loca- 

tions and to monitor results. 

KIM is available to the system designer in several forms. In its 

simplest form, a single device of the MCS6530 type including 1024 bytes of 

pre-programmed ROM may be included as a component in an existing system. 

The KIM array includes a monitor program which provides the following 

features: 

a) Data input and output control from serial teletypewriters (ASR 33, 

Silent 700, etc.) 

b) Data input and system control from a 22-key keyboard 

c) Address and data display on a 6-digit, 7-segment type display. 

A microprocessor system designed to include the KIM array will allow 

the designer to perform the following operations: 

yboard (KB) or teletypewriter 

for entry, display and control. 

b) If in KB mode, the user may enter address or data fields from the 

Keyboard. The user may display the contents of any address iocation in the 

system and can modify the contents of any address location (other than pre- 

programmed ROM locations). The step operation (STEP key) provides a con- 

venient method for displaying the data contained in successive memory loca- 

tions. Program execution may be authorized to begin from any selected 

starting address using the RUN key. 

c) If in the TTY mode, the user may obtain a printing of the data at 

any memory location. He can modify the data contained in any memory loca- 

tion. Program listing from any start address to any end address may be 

authorized. Paper tapes may be loaded or generated automatically. Finally, 

program execution may be initiated from any selected starting address. 

d) In either mode, the user terminates program execution using 

the STOP key which will return control of the system to the KIM program. 

Alternatively, a depression of the RST key causes a total reset of the sys- 

tem and a return of the system to KIM program control. 

The KIM array is also available to the system designer as a part of 

a special design-in sub-system provided in the form of a printed circuit 

card. Included on this card are the following functional elements: 
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a) MCS6502 microprocessor array 

b) MCS6530-002 array (containing the KIM monitor program) 

c) 22-key keyboard and mode~select switch 

d) 6-digit, 7-segment LED display 

e) 1024 x 8 RAM 

f) MCS6530-003 array providing an interval timer, 16 I/0 pins, and 

64 bytes of RAM 

g) All interface circuits for operation with serial teletypewriters. 

This subsystem provides the same operating features described 

earlier but is supplied as an operating unit requiring the user to provide 

only the +5 volt power supply in order to commence operating. As a "stand- 

alone" subsystem, the user may enter and debug programs of up to 1024 

steps and control the action of up to 16 1/0 pins. 

For further details on physical and operating characteristics of the 

KIM array and subsystem, the reader is referred to the KIM manual supplied 

separately. 

3.3.2 TIM--Teletype Input Monitor 

TIM is a pre-programmed MCS6530. The application of the Teletype 

Input Monitor is to allow the user to interface to an ASCII device such as 

a Teletype, CRT, Execuport, etc. using the ASCII serial communication tech- 

niques to communicate to and from the microprocessor. This effectively 

allows the user to load memory from the keyboard or from paper tape or 

cassettes which are attached to his device. By the addition of a single 

TTL package to the system, TIM can be configured so that it is the starting 

point for the microprocessor, but once the initialization has been accom- 

plished it transfers itself out of the start-up memory, changes the rest 

of the microprocessor memory to normal configuration and operates trans- 

parent to the microprocessor. 

The technique for using the TIM to develop a microprocessor system 

is primarily after the system is determined to be wired correctly by the 

techniques already described. It is then used to debug the user's code by 

means of allowing the user to input pre-specified values, execute portions 

of the code and examine the results. 

It should be noted that because I/0 devices are extension of memory, 

debugging techniques are simplified. They can be configured to 
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control I/0 devices to test that lights can be lit, switches tested, 

motors started and stopped, etc. For instance, all of the connections to 

lights and switches can be checked from the teletype keyboard by 

writing into the I/0 registers the appropriate code that turns on the 

lights. Correct operation of switches can be checked without the program 

running by putting the switches in either state and reading the I/0 device 

result indicated to the programmer. This type of checking totally shakes 

out the 1/0 connections to make sure the 1/0 device is located in the cor- 

rect memory address, determines that the wiring to the I/0 devices is cor- 

rect and checks on the microprocessor bus. 

A rational technique for using either TIM or KIM is to interconnect 

the device into the system to get the microprocessor to pass the single- 

step start-up sequence and then to use the debugging capability of the TIM 

prior to executing any of the user's code to verify that all input/output 

connections are correct. In cases such as stopping motors and other devices 

which require timing, the proper connection to the motors and other devices 

can be checked without the motor itself physically being checked by uncon- 

necting leads, opening up connectors and verifying with a scope or a meter 

that the microprocessor's influence at that point is as would be expected 

on a static basis. Therefore, this technique is recommended as the second 

step of a start-up sequence. 

Significant details are given in the section on the use of restart 

or start sequence and a single cycle operation to verify the interconnec- 

tion of most of the system. It should be recalled that the instructions 

were given independent of the coding that was available to the programmer. 

The advantage of using the TIM or KIM in the start-up check-out is 

that there is known code which is guaranteed to be accurate that should be 

evoked during this start-up sequence. By looking at the coding of the ROM 

as it appears in the documentation on the TIM or KIM, the user can use the 

known sequences from the TIM or KIM program to verify the start-up sequence, 

thereby removing one more variable. Therefore, all initial systems check- 

out should be done using TIM or KIM program first in the start-up sequence 

to make sure that the interconnection to TIM and to memory are cor- 

rect. Then once the basic operation of TIM has been verified, there 

is a known sequence that the TIM will go through dynamically which will 

allow the user to verify that the TIM is operational. Then the user should 



verify the rest of his memory and I/0 connections by use of writing and 

reading in the memory locations using the debugging feature of the TIM or 

KIM. This verifies the connection and operation of each of the chips of 

the system and will verify all the interconnections to all outboard devices. 

Now the problem is truly reduced to making sure that the program- 

mer's code is correct and the user's program can be loaded by means of 

either through-the-keyboard or through-the-auxiliary devices. 

The program can be debugged as a program rather than worrying about 

whether or not the problem is one of hardware or software. By definition 

other than incorrect timing to I/0 devices, the problem has been reduced to 

one of programming mistakes. 

For a more detailed discussion on the programming on TIM, the user 

is referred to the TIM manual supplied separately. 

3.3.3 MDTI--Microcomputer Development Terminal 

Almost all of the sections in this report had to do with how one 

goes about interconnecting a system and debugging it. MDT is a prepackaged 

system and, therefore, should not have the problems described above unless 

it is being used in circuit emulation mode. Therefore, the user will pri- 

marily be debugging his programs and his basic interconnection to his I/0 

devices with the MDT. Therefore, use of the MDT represents a significantly 

different technique than described in this manual. This technique is de- 

scribed in the MDT manual. 
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3.4 MICROPROCESSOR START-UP PROCEDURE 

3.4.1 Introduction 

This section attempts to tie together all of the techniques previ- 

ously discussed into one ordered procedure. This procedure is based on 

experience gained in bringing up systems using processors from several 

different manufacturers. While it is certainly true that no single pro- 

cedure can be expected to catch all the software and hardware errors which 

can exist in microcomputer systems, it is hoped that this step-by-step 

approach will allow the designer to bring up his system with an absolute 

minimum of difficulty. 

This procedure assumes the existence of Single Cycle and/or Single 

Instruction logic. Any of the System Development tools discussed in Sec- 

tion 3.3 will assist the user in bringing up his system. These devices 

allow convenient entry of test programs as well as modification of the sys- 

tem program and data. 

Each step in the procedure includes the following information: 

* Section of the System hardware/software to be checked. 

* Hardware, test equipment, etc. required to perform the test. 

* Action to be taken in implementing the test. 

* Expected results. 

* Suggested procedures for analyzing failure modes. 

It cannot be emphasized too strongly that one must utilize a very 

methodical, step-by-step procedure aimed at solving one problem at a time 

within the system. It is very easy for several problems to amplify each 

other to such an extent that nothing within the system seems to be operat- 

ing properly. Correcting problems one at a time will ultimately yield a 

complete working system with minimum frustration. 

3.4.2 System Power--Step 1 

It is generally recommended that first prototypes of microcomputer 

systems be built using sockets for the ICs (processor, memories, etc.). 

One distinct advantage of this technique is that it allows the designer to 

verify that Von and Veg are properly connected to each socket before the 

chips are inserted. The Vop line should be within the tolerances specified 

about the 5 volt nominal relative to Veg: This basic first step can help 

avoid power supply connections which may be fatal to the chips in the sys- 

tem. 
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After using a voltmeter or oscilloscope to check power connections, 

insert the processor into its socket and verify that the additional cur- 

rent drain is within specifications for this device. 

Before inserting the other devices, examine the address lines, SYNC 

line (6502) and the output clocks (6502, 6503) to make sure that the pro- 

cessor is generating signals. The address lines should be incrementing 

and the sync line should be generating regular, positive going pulses. 

The RES line and the RDY line should be high (> +2.4V) for this test. 

If the processor appears to be operating and power consumption is 

reasonable, the rest of the devices in the system can be inserted into 

their sockets. 

3.4.3 Basic System Timing--Step 2 

Before one can expect a microprocessor system to function, proper 

operation of the basic system timing signals (9%), $5, etc.) must be veri- 

fied. The most important of these signals is the system clock. 

A common fault in MC6800 and MCS6501 systems is generation of input 

clocks (@, and $5) which are not full voltage or which have significant 

overlap. Another very serious difficulty often encountered is undershoot. 

Each of the specifications listed in the data sheet for the system clocks 

must be properly met. Figure 3.6a illustrates the problems often en- 

countered in clock signals such as undershoot and overlap. Figure 3.6b is 

an example of MCS6501 @, and @5 clocks as they would normally appear in a 

properly operating system. 

In systems based on other than the MCS6501, the clocks which must 

be examined are the processor output clocks. In the 6502, both phases (9) 

and @5) are available for driving the rest of the system. In this system 

it is necessary to check the clock timing very carefully to assure that 

the timing of the clock signals within the processor is compatible with 

that used on the support chips. 

Using an oscilloscope, compare the $, input clock and the $5 clock 

presented to the support chips to verify that the delay due to clock buf- 

fering does not exceed the allowable maximum. 

Static and dynamic analysis of the Reset function can provide very 

detailed information on how the system is operating. In fact, it is this 
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FIGURE 3.6a — improper Clocks (Note undershoot and overlap) 

FIGURE 3.6b — Proper Clocks 
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step which will verify the operation of most of the basic system hardware. 

The tools required are: 

* Single Cycle/Single Instruction Logic 

* Oscilloscope 

a 
a Signal generator (for driving RESET) 

3.4.4.1 Static Analysis of System Details 

Depress the HALT button and then the manual RESET switch; then push 

the single cycle switch six times. This will step the processor through the 

first part of the BRK sequence and into the RESET vector fetch. At this 

time the processor should be generating FFFC on the address bus and the ROM 

should have put the low order byte of the RESET vector onto the data bus in 

response to this address. This is an excellent time to check the following 

very basic items: 

A. Address Lines: 

Using the oscilloscope, verify that the logic levels on the 

address lines are proner an 

through any bus expanders onto the memory and peripheral 

chips. This is a very important test since improper implemen- 

tation of bus expanders is a very common circuit fault. 

B. ROM/PROM chip selects: 

Using the oscilloscope, verify that the address FFFC does 

select the ROM which contains the low order byte of the RESET 

vector. 

C. Data Bus: 

Using the oscilloscope, verify that the voltages on the data 

bus pins of the processor are proper. It is important that 

these signals be analyzed at the processor to assure proper 

operation of any bi-directional bus expanders in the system. 

In this test, the most common indication of improper operation 

of the data bus expanders is "floating" processor data bus 

pins, i.e., the processor data bus pins are being driven 

neither high nor low because the bus expanders are in the 

open-circuit condition or are reversed. 

-144- 



D. Miscellaneous Processor Pins: 

Using the oscilloscope, briefly examine the other processor 

pins (R/W, TRO, NMI, etc.) to assure that there are no volt-~ 

age level problems detectable at this point. Both of the 

interrupt inputs and the R/W output should be high. Examine 

the R/W signal on the input to the memory and peripheral 

devices. 

After these initial tests are complete, it should be possible to 

press the single step switch once more to fetch the high order byte of the 

interrupt vector fromaddress FFFD. On the next actuation of the single 

cycle switch, the processor address bus should contain the RESET vector 

which was fetched from memory. 

At this point, the processor is ready to execute the system ini- 

tialization routine. During initialization, it can be expected that pro- 

gram memory will be accessed, peripheral registers will be loaded, and 

internal processor registers will be cleared or set to a starting value. 

It is extremely useful to execute this routine one instruction at a time to 

determine that each time program memory is accessed, the proper instruction 

is returned. However, unless a data trap is provided, it will be more 

meaningful to utilize dynamic analysis techniques to analyze the operation 

of peripheral devices, since most peripheral accesses will be for the pur- 

pose of writing either the I/0 control or the control registers in the 

peripheral devices. 

3.4.4.2 Dynamic Analysis of System Details 

The general technique of dynamic analysis is discussed in Section 

3.2. The discussion which follows will use this technique to analyze many 

of the details of the system operation. 

Set up the system as described in Section 3.2.2. After the test 

equipment is operating properly, most of the system operation can be veri- 

fied using only the oscilloscope. 

3.4.4.2.1 Address Bus Verification 

The first item which must be checked is the specific timing of 

the address lines. These lines will change during the first part of @| but 

after the specified period, they should stabilize and remain stable through 
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the rest of the cycle. Figure 3.7a shows the waveform which one should ex- 

pect to see while examining |, @> and two address lines. In this illus- 

tration, one address line is going high and the other is going low. These 

lines are being generated within the processor and are guaranteed to oper- 

ate properly provided the total loading on the pins is within specifica- 

tions. The most common cause of both voltage level and rise time problems 

is overloading. Voltage level problems are commonly evidenced by the 

"zero" level being too high, i.e., the address buffer is being asked to 

sink too much current. Excess capacitance is usually evidenced by the rise 

and fall times being too long (Figure 3.7b). 

In examining the address lines, it is important that the data be 

examined on the processor and directly on the various support chips. This 

will assure that any bus expanders in the system are operating properly and 

that the addresses are valid where they are actually being used. 

3.4.4.2.2 Data Bus Verification 

After the addresses have been verified, the next step is to ex- 

amine the data bus to verify the validity of data being transferred both 

from the processor to the support chips and from the support chips back ~ 

into the processor. 

Figure 3.8 illustrates the waveform which one can expect to see 

on the data bus lines. It is very important to note that during $, there 

is no way to predict the voltage on the data bus since neither the proces- 

sor nor the support chips are driving these lines. However, during 05 the 

data bus pins should go either high or low. It is only during O> (high) 

that the validity of the data can be verified. 

Three very important parameters must be considered when examin- 

ing the data bus. These are the voltage levels, the time at which the data 

is valid and the delay from the trailing edge of $5 to data becoming in- 

valid. 

A. Voltage Levels: 

The logic levels on the processor data bus must always be 

greater than 2.4 volts for a logic 1 and less than 0.4 volts 

for a logic @. This is a very basic concept but a quick 

check on these levels vary og 

can help the designer avoid hours of attempting to make a 
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system operate with signals which are actually marginal but 

which on the surface appear to be satisfactory. 

Another very important item to check is whether or not 

the logic "0" voltage is actually going negative (below GND). 

It is very important that the logic signals going into all 

the chip inputs not be allowed to go below -0.3 volts as 

indicated in the specifications. 

Data Valid Time: 

The time at which data becomes valid indicates the total 

time which the processor or memory has available to stabil- 

ize the gates and latches used to trap the data within the 

chip. For this reason the data must not take too long to 

reach either a valid high "1" or a valid low "0." The pri- 

mary cause of slow signals on the data bus is excessive 

loading, either resistive or capacitive. Carefully check 

the devices which are attached to the bus to make sure that 

the total loading is within specifications. 

Hold Time: 

The last important consideration, hold time," is defined as 

the time between the trailing edge of the @5 pulse and the 

point at which data is no longer valid. A minimum of 10 

nsec hold time is required for the processor to trap the 

data into its internal input latches. The processor inter- 

nal $, pulse is used to gate the contents of the data bus 

into these latches. Hold time is also required by the vari- 

ous support chips within the system. Carefully check the 

signals as they appear on the RAMs, ROMs, etc. to verify 

h Ne ee ae EHS 

. . . . 
t each is being operated in accordance with 
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3.4.5 Detailed Component Check 

After the dynamic check of the reset routine, the next step is to 

attempt to run the system program. The success of this operation will 

determine whether or not a further detailed component check is necessary. 

It is important to note that the checkout of the system program should 

proceed one step at a time in much the same manner as we have approached 

the hardware checkout. If a careful examination has been made of all of 

the devices, data paths, etc. in the system, the software checkout can 

proceed under the assumption that the hardware is fully operational. How- 

ever, it is inevitable that doubts will arise. There are times in the 

software checkout process that the program will appear to be incorrect; 

data won't be going into memory as it should or, in general, some hardware 

failure will be indicated. As soon as this happens, the suspected com- 

ponents should be examined in detail. In keeping with the policy of "one 

step or one problem at a time," it is important that potential hardware 

problems not be allowed to invalidate the effort being put into the soft- 

ware checkout. 

Component problems can be one of two types: component failure, 

i.e., a part not operating per specifications; or system failure, i.e., a 

part being used wrong in the system. The latter problem can be a result 

of incorrect system design or incorrect wiring. The problem of functional 

components not operating properly in the system is the one which will be 

addressed here. In fact, if there is any doubt about a component being 

functional, it should be replaced immediately upon verification of proper 

signals to all inputs. If it still does not operate properly, the problem 

is most likely system related. 

The detailed component check is performed most effectively by load- 

ing a small looping program into the system RAM. For this reason, the TIM 

or KIM debug software (see TIM and KIM Manuals) can be of significant 

value in this process. The procedure involves static and dynamic operation 

of a small test program which exercises each of the components in the sys- 

tem. The goal of this step should be a complete verification that all chip 

selects are operating properly, that all data address lines are operating 

properly and that the support chips are driving the processor pronerly. 

-148- 



The suggested procedure for checkout of each type of component is discussed 

separately below. 

A. ROMs (PROMS): 

The most straightforward component in any microprocessor system 

a 
itt we 2) fu Q 13 ct © ct i @ ut n 8-bit wor wn oo ir 

2 a <ct ~ a af T.- his device simply a 

data bus in response to an address. Difficulty with ROMs is 

usually caused by improper chip selects or by mis-application 

of devices which are not part of the MCS6500 family. For this 

reason, static testing of ROMs is usually a very effective first 

step. This requires entering a test program into RAM and exe- 

cuting this program using the single cycle switch. The program 

itself should simply perform a READ (for example, an LDA or LDX 

instruction) of a selected word for each ROM chip to be tested. 

The chip selects can then be examined and at the same time, the 

address lines presented to the chips can be examined along with 

the data put on the data bus. 

After the chip select, address bus and data bus have been 

verified statically, it may be necessary to execute the same 

test program dynamically to assure that all chips in the system 

are operating at system speed. At this point, it may be neces- 

sary to include a WRITE operation (STA, STX, STY, etc.) in the 

loop to provide a sync signal. 

Analysis of the dynamic operation of the ROMs should involve 

first looking at each address and data bus lines directly on the 

processor chip. It is here that the address is being generated, 

and it is here that the data must meet a speed specification. 

If data is not valid at the proper time, the next step is to 

determine where excessive delay has been introduced into the 

data path from address output, through the ROM and back to the 

processor data bus. Keep in mind that it is this entire path 

which must operate at speed to assure proper processor opera— 

tion. In fact, if the delays are excessive, it may be necessary 

to slow down the system clock rate to allow the program data to 

reach the processor in time. An alternative solution to this 

problem is the implementation of the RDY signal to hold the pro- 
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cessor for one cycle each time it fetches data or program from 

the ROMs. 

Although the problems discussed above may be encountered at 

this point, it is much more likely that a wiring error will 

cause a single address or data line to be excessively loaded so 

that it operates slow or not at all. This problem can usually 

be detected and fixed quite easily by looking at each component 

in the data path. 

RAMs: 

Operation of the RAMs in a microprocessor system can be checked 

in much the same manner as the ROMs. Execution of a test loop 

program both statically and dynamically for each chip in the 

system should be sufficient to verify proper operation of the 

RAMs in the system. For each RAM, both a WRITE and a READ oper~ 

ation should be included in the test loop. This will allow 

checkout of data transfers in both directions. 

During singie cycle execution of the test loop, the proces~ 

sor will stop only in the RAM read operations. However, this 

will allow a static check of the chip select logic and the 

address and data lines. Running the program dynamically will 

allow verification that the data and address signals presented 

to the RAMs during the WRITE operation are within specifica- 

tion for the RAM being used in the system and that the total 

delays through the address, RAM, and data bus path are within 

specifications for the processor during the READ operations. 

As with the ROMs, the most likely problem to be encountered at 

this point is wiring errors which cause a specific device to 

operate improperly. A careful check of each pin will allow 

detection of this type of probiem. 

PIAs: 

The peripheral interface devices (6520, 6530, etc.) can all be 

checked out in the manner described above. However, since these 

chips do many different operations, the test program must be 

much more complex than that required for the ROM and RAM. 
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However, it can usually be limited to testing only those func- 

tions which are used in the system. 

A large part of the operation of the peripheral interface 

devices can be verified by doing a WRITE followed by a READ for 

each register on the chip. This will allow a complete checkout 

of the data paths between the processor and the chips as well as 

a checkout of all the chip select functions. However, a more 

complete analysis may be required to verify that data is appear- 

ing properly on the output pins of the peripheral chip and that 

data on the inputs is being reflected properly back into the 

processor. This will involve disconnecting the peripheral sub- 

system which the processor is attempting to drive and manually 

putting data into the inputs. A separate test can verify the 

validity of output data. 

After the s n hardware has been examined in the detail discussed above, 

the designer will have developed confidence that his system can operate properly 

once the system program is completely debugged. Verification of the system pro- 

gram should proceed with a section-by-section checkout as discussed above. Each 

subroutine, interrupt routine, etc. should be examined separately. They can 

then be combined to form the major peripheral operating routines, arithmetic 

routines, etc. that make up the system. The final result should be a function- 

ing program which has been examined in all its details running on a system 

which is fully operational. 
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APPENDIX A 

SUMMARY OF SINGLE CYCLE EXECUTION 

This section contains an outline of the data on both the address bus and 

the data bus for each cycle of the various processor instructions. It tells 

the system designer exactly what to expect while single cycling through a 

program. 

Note that the processor will not stop in any cycle where R/W is a 0 (write 

cycle). Instead, it will go right into the next read cycle and stop there. For 

this reason, some instructions may appear to be shorter than indicated here. 

All instructions begin with TO and the fetch of the OP CODE and continue 

through the required number of cycles until the next TO and the fetch of the 

next OP CODE. 

While the basic terminology used in this appendix is discussed in the Pro- 

gramming Manual, it has been defined below for ease of reference while studying 

Single Cycle Execution. 

OP CODE--The first byte of the instruction containing the operator and mode of 

address. . 

OPERAND--The data on which the operation specified in the OP CODE is performed. 

BASE ADDRESS--The address in Indexed addressing modes which specifies the loca- 

tion in memory to which indexing is referenced. The high order of byte 

of the base address (ABO8 to AB15) is BAH (Base Address High) and the 

low order byte of the base address (ABOO to ABO7) is BAL (Base Address 

Low) . 

EFFECTIVE ADDRESS--The destination in memory in which data is to be found. The 

effective address may be loaded directly as in the case of Page Zero 

and Absolute Addressing or may be calculated as in Indexing operations. 

The high order byte of the effective address (ABO8 to AB15) is ADH and 

the low order byte of the effective address (ABOO to ABO7) is ADL. 

INDIRECT ADDRESS--The address found in the operand of instructions utilizing 

(Indirect),Y which contains the low order byte of the base address. 

IAH and IAL represent the high and low order bytes. 

JUMP ADDRESS--The value to be loaded into Program Counter as a result of a 

Jump instruction. 



A. 1. SINGLE BYTE INSTRUCTIONS 

ASL DEX NOP TAX TYA 
CLC DEY ROL TAY 

CLD INX SEG TSX 
CLI INY SED TXA 

CLV LSR SEI TXS 

These single byte instructions require two cycles to execute. During the 

second cycle the address of the next instruction in program sequence will be 

placed on the address bus. However, the OP CODE which appears on the data bus 

during the second cycle will be ignored. This same instruction will be fetched 

on the following cycle at which time it will be decoded and executed. The ASL, 

ROL and LSR instructions apply to the accumulator mode of address. 

Tn Address Bus Data Bus R/W Comments 

TO PC OP CODE 1 Fetch OP CODE 

TL PC +1 OP CODE 1 

(Discarded) 

TO PC + 1 OP CODE 1 Next Instruction 

A. 2. INTERNAL EXECUTION ON MEMORY DATA 

. ADC CMP EOR LDY 

AND CPX LDA ORA 

BIT CPY LDX SBC 

The instructions listed above will execute by performing operations in- 

side the microprocessor using data fetched from the effective address. This 

total operation requires three steps. The first step (one cycle) is the OP CODE 

fetch. The second (zero to four cycles) is the calculation of an effective 

address. The final step is the fetching of the data from the effective address. 

Execution of the instruction takes place during the fetching and decoding of 

the next instruction. 



b> 2.2. 

2.3. 

Immediate Addressing (2 cycles) 

| ls re © 

Address Bus 

Address Bus 

PC 

PC +1 

00, ADL 

PC + 2 

Data Bus 

OP CODE 

Data 

OP CODE 

Data Bus 

OP CODE 

ADL 

Data 

OP CODE 

Absolute Addressing (4 cycles) 

Tm 

TO 

T1 

T2 

T3 

TO 

Address Bus 

PC 

PCE +1 

PC + 2 

ADH, ADL 

PC + 3 

Data Bus 

OP CODE 

ADL 

ADH 

Data 

OP CODE 

Indirect, X Addressing (6 cycles) 

in 
TO 

Tl 

T2 

T3 

T4 

T5 

TO 

Address Bus 

PC 

PC +1 

00, BAL 

00, BAL + X 

00, BAL + 
X+1 

ADH, ADL 

PC + 2 

Data Bus 

OP CODE 

BAL 

Data 

(Discarded) 

ADL 

ADH 

Data 

OP CODE 

RoR 

ps = 

RPP FP 

Comments 

Fetch OP CODE 

Fetch Data 

Next Instruction 

Comments 

Fetch OP CODE 

Fetch Effective Address 

Fetch Data 

Next Instruction 

Comments 

Fetch OP CODE 

Fetch low order Effective 

Address byte 

Fetch high order Effective 

Address byte 

Fetch Data 

Next Instruction 

Comments 

Fetch OP CODE 

Fetch Page Zero Base 

Address 

Fetch low order byte of 
Effective Address 

Fetch high order byte of 
Effective Address 

Fetch Data 

Next Instruction 



2.5. 

2.6. 

Absolute, X or Absolute, Y Addressing (4 or 5 cycles) 

Tn 

TO 

Tl 

T2 

T3 

T4* 

TO 

Address Bus 

PC 

PC + 1 

PC + 2 

ADL: BAL + 

index register 

ADH: BAH + C 

ADL: BAL + 

index register 

ADH: BAH + 1 

PC + 3 

Data Bus 

OP CODE 

BAL 

BAH 

Data* 

Data 

OP CODE 

R/W 
1 

1 

1 

Comments 

Fetch OP CODE 

Fetch low order byte of 

Base Address 

Fetch high order byte of 

Base Address 

Fetch data (no page cross- 

ing) 

Carry is @ or 1 as re- 
quired from previous add 
operation 

Fetch data from next page 

Next Instruction 

*If the page boundary is crossed in the indexing operation, the data 
fetched in T3 is ignored. 

cycie is bypassed. 
If page boundary is not crossed, the T4 

Zero Page, X or Zero Page, Y Addressing Modes (4 cycles) 

T3 

TO 

Address Bus Data Bus 

PC OP CODE 

PC +1 BAL 

00, BAL Data 

(Discarded) 

00, BAL + Data 
index 

register 

PC + 2 OP CODE 

R/W 
1 

1 

Comments 

Fetch OP CODE 

Fetch Page Zero Base 

Address 

Fetch Data (no page cross- 

ing) 

Next Instruction 



T3 

T4 

T5* 

TO 

Address Bus 

PC 

00, IAL 

OO, IAL +1 

ADL: BAL + Y 

ADH: BAH + C 

ADL: BAL + Y 

ADH: BAH + 1 

PC + 2 

Data Bus 

OP CODE 

TAL 

BAL 

BAH © 

Data* 

Data 

OP CODE 

Indirect, Y Addressing Mode (5 or 6 cycles) 

R/W 
1 

1 

1 

Comments. 
Fetch OP CODE 

Fetch Page Zero Indirect 

Address 

Fetch low order byte of 

Base Address 

Fetch high order byte of 

Base Address 

Fetch Data from same page 

Carry is 0 or l as re- 
quired from previous add 

operation 

Fetch Data from next page 

Next Instruction 

*If page boundary is crossed in indexing operation, the data fetch in 
T4 is ignored. 
passed. 

STA 

STX 
STY 
hy oe 

STORE OPERATIONS 

If page boundary is not crossed, the T5 cycle is by- 

The specific steps taken in the Store Operations are very similar to 

those taken in the previous group (Internal execution on memory data). However, 

in the Store Operation, the fetch of data is replaced by a WRITE (R/W = 0) 

cycle. 

on indexing operations. 

A. 3.1. 

Tn 

TO 

T1 

T2 

TO 

PC 

PC +1 

00, ADL 

PC + 2 

Zero Page Addressing (3 cycles) 

Address Bus Data Bus 

OP CODE 

ADL 

Data 

OP CODE 

No overlapping occurs and no shortening of the instruction time occurs 

Comments 

Fetch OP CODE 

Fetch Zero Page Effective 

Address 

Write internal register 

to memory 

Next Instruction 



3.2. 

3.3. 

3.4. 

Absolute Addressing (4 cycles) 

To 
TO 

T1 

T2 

T3 

TO 

Address Bus 

PC 

PC + 1 

PC + 2 

ADH, ADL 

PC + 3 

Data Bus 

OP CODE 

ADL 

ADH 

Data 

OP CODE 

Indirect, X Addressing (6 cycles) 

Tn 
TO 

T1 

lar i) 

T4 

T5 

TO 

Address Bus 

PC 

PC +1 

OO, BAL 

00, BAL +X 

00, BAL + 
X+1 

ADH, ADL 

PC +2 

Data Bus 

OP CODE 

BAL 

Data 

(Discarded) 

ADL 

ADH 

Data 

OP CODE 

R/W 
1 

1 

R/W 
1 

= 

Comments 
Fetch OP CODE 

Fetch low order byte of 

Effective Address 

Fetch high order byte of 

Effective Address 

Write internal register 

to memory 

Next Instruction 

Comments 

Fetch OP CODE 

Fetch Page Zero Base 

Address 

Fetch low order byte of 

Effective Address 

Fetch high order byte of 

Effective Address 

Write internal register 

to memory 

Next Instruction 

Absolute, X or Absolute, Y Addressing (5 cycles) 

Tn 
TO 

TL 

T2 

T3 

T4 

TO 

Address Bus 

PC + 2 

ADL: BAL + 

index 

register 

ADH: BAH + C 

ADH, ADL 

PC + 3 

Data Bus 

OP CODE 

BAL 

BAH 

Data 

(Discarded) 

Data 

OP CODE 

A-6 

R/W 
L 
4 
+ 

Comments 

Fetch OP CODE 

Fetch Low order byte of 

Base Address 

Fetch high order byte of 

Base Address 

Write internal register 

to memory 

Next Instruction 



A. 3.5. 

Tn 
TO 

Tl 

T2 

T3 

TO 

In 
TO 

T1 

T2 

T3 

T4 

T5 

TO 

ASL 

DEC 

INC 

Address Bus Data Bus 

PC OP CODE 

PC +1 BAL 

02, BAL Data 

(Discarded) 

ADL: BAL + Data 

index 

register 

PC + 2 OP CODE 

Address Bus Data Bus 

PC OP CODE 

PC +1 TAL 

00, IAL BAL 

00, IAL +1 £BAH 

ADL: BAL + Y Data 

(Discarded) 

ADH: BAH 

ADH, ADL Data 

PC + 2 OP CODE 

READ-~-MODIFY--WRITE OPERATIONS 

LSR 

ROL 

ROR 

R/W 
1 

1 

Indirect, Y Addressing Mode (6 cycles) 

R/W 
1 

1 

Zero Page, X or Zero Page, Y Addressing Modes (4 cycles) 

Comments 

Fetch OP CODE 

Fetch Page Zero Base 

Address 

Write internal register 

to memory 

Next Instruction 

Comments 

Fetch OP CODE 

Fetch Page Zero Indirect 
Address 

Fetch low order byte of 

Base Address 

Fetch high order byte of 
Base Address 

Write Internal Register 

to memory 

Next Instruction 

The Read--Modify--Write operations involve the loading of operands 

from the operand address, modification of the operand and the resulting modi- 

fied data being stored in the original location. 

Note: The ROR instruction will be available on MCS650X microprocessors 

after June, 1976. 



4.1. 

- 4.2. 

. 4.3. 

Zero Page Addressing (5 cycles) 

Tn 
TO 

TL 

T2 

T3 

T4 

TO 

Address Bus 

PC 

PC +1 

00, ADL 

00, ADL 

00, ADL 

PC + 2 

Data Bus 

OP CODE 

ADL 

Data 

Data 

Modified 

Data 

OP CODE 

Absolute Addressing (6 cycles) 

Tn 
TO 

Tl 

T2 

T3 

T4 

T5 

Td 

Zero Page, X Addressing (6 cycles) 

Tn 
TO 

Tl 

T2 

T3 

T4 

T5 

TO 

Address Bus 

PC 

PC + 1 

PC + 2 

ADH, ADL 

ADH, ADL 

ADH, ADL 

PC + 3 

Address Bus 

PC 

PC + 1 

00, BAL 

ADL: BAL + X 

(without 

carry) 

ADL: BAL + X 

(without 
carry) 

ADL: BAL + X 

(without 

carry) 

PC + 2 

Data Bus 

OP CODE 

ADL 

ADH 

Data 

Data 

Modified 

Data 

OP CODE 

Data Bus 

OP CODE 

BAL 

Data 

(Discarded 

Data 

Data 

Modified 

Data 

OP CODE 

A-8 

R/W 
1 

1 

Comments 

Fetch OP CODE 

Fetch Page Zero Effective 

Address 

Fetch Data 

Write modified Data back 

to memory 

Next Instruction 

Comments 

Fetch OP CODE 

Fetch low order byte of 
Ff fartriwva Addrace BHrrecrive Address 

Fetch high order byte of 
Effective Address 

Write modified Data back 

into memory 

Next Instruction 

Comments 

Fetch OP CODE 

Fetch Page Zero Base 

Address 

Fetch Data 

Write modified Data back 

into memory 

Next Instruction 



A. 4.4. 

. el. 

Absolute, X Addressing (7 cycles) 

Tn Address Bus Data Bus R/W 

TO PC OP CODE 

Tl PC + 1 BAL 1 

T2 PC + 2 BAH 1 

T3 ADL: BAL + X Data 1 
(Discarded) 

ADH: BAH + C 

T4 ADL: BAL + X Data 1 

ADH: BAH + C 

T5 ADH, ADL Data 0 

T6 ADH, ADL Modified 0 
Data 

TO PC + 3 OP CODE 1 

MISCELLANEOUS OPERATIONS 

BCC BRK PHP 

BCS BVC PLA 

BEQ BVS PLP 

BMT JMP RTI 

BNE JSR RTS 

BPL PHA 

Push Operation--PHP, PHA (3 cycles) 

To Address Bus Data Bus R/W 

TO PC OP CODE 1 

Tl PC +1 OP CODE 1 

(Discarded) 

T2 Stack Pointer* Data 0 

TO PC + 1 OP CODE 1 

*Subsequently referred to as "Stack Ptr." 

Comments 

Fetch OP CODE 

Fetch low order byte of 

Base Address 

Fetch high order byte of 
Base Address 

Fetch Data 

Write modified Data back 

into memory 

New Instruction 

Comments 
Fetch OP CODE 

Write Internal Register 

into Stack 

Next Instruction 



A. 5.2. Pull Operations--PLP, PLA (4 cycles) 

Tn Address Bus Data Bus R/W Comments 

TO PC OP CODE 1 Fetch OP CODE 

Tl PC + 1 OP CODE 1 

(Discarded) 

T2 Stack Ptr. Data 1 

(Discarded) 

T3 Stack Ptr. +1 Data 1 Fetch Data from Stack 

TO PC + 1 OP CODE 1 Next Instruction 

A. 5.3. Jump to Subroutine--JSR (6 cycles) 

Tn Address Bus Data Bus R/W Comments 

TO PC OP CODE 1 Fetch OP CODE 

Tl PC + 1 ADL 1 Fetch low order byte of 

Subroutine Address 

T2 Stack Ptr. bata i 

(Discarded) 

T3 Stack Ptr. PCH 0 Push high order byte of 

program counter to Stack 

T4 Stack Ptr. - 1 PCL 0 | Push low order byte of 

program counter to Stack 

T5 PC + 2 ADH 1 Fetch high order byte of 
Subroutine Address 

TO Subroutine OP CODE 1 Next Instruction 
Address (ADH, 
ADL) 
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Break Operation--(Hardware Interrupt)-BRK (7 cycles) 

Address Bus To 
TO 

T1 

T3 

T4 

T5 

T6 

TO 

PC 

PC + i 

(PC on hard- 

ware inter- 

rupt) 

Stack Ptr. 

Stack Ptr. 

Stack Ptr. 

FFFE 

(NMI-FFFA) 

(RES-FFFC) 

FFFF 

(NMI-FFFB) 

(RES~FFFD) 

Interrupt Vec- 

tor (ADH, ADL) 

Data Bus R/W 

OP CODE 1 

Data 1 

(Discarded) 

PCH 0 

PCL 0 

P 0 

ADL 1 

ADH 1 

OP CODE 1 

Return from Interrupt-RTI (6 cycles) 

Tn 
TO 

T1 

T2 

T3 

T4 

T5 

TO 

PC 

PC + 1 

Stack Ptr. 

Stack Ptr. 

Stack Ptr. 

Stack Ptr. 

PCH, PCL 

Address Bus 

+1 

+ 2 

+ 3 

Data Bus R/W 

OP CODE 1 

Data 1 

(Discarded) 

Data 1 

(Discarded) 

Data 1 

Data 1 

Data 1 

OP CODE 1 

Comments 

Fetch BRK OP CODE (or 

force BRK} 

Push high order byte of 
program counter to Stack 

Push low order byte of 

program counter to Stack 

Push Status Register to 

Stack 

Fetch low order byte of 

interrupt vector 

Fetch high order byte of 

interrupt vector 

Comments 

Fetch OP CODE 

Pull P from Stack 

Pull PCL from Stack 

Pull PCH from Stack 

Next Instruction 



A.5.6.1. 

A.5.6.2. 

A. 5. 7. 

Jump Operation-—JMP 

Tn 
TO 

T1 

T2 

TO 

T4 

TO 

Address Bus 

PC 

PC +1 

PC + 2 

ADH, ADL 

Address Bus 

PC 

PC + 1 

tJ oO} + K 

IAH, IAL 

TAH, IAL + 1 

ADH, ADL 

Data Bus 

OP CODE 

ADL 

ADH 

OP CODE 

Data Bus 

OP CODE 

IAL 

ADH 

OP CODE 

R/W 
1 

FF 

Return from Subroutine--RTS (6 cycles) 

In 
TO 

Tl 

T3 

T4 

T5 

TO 

Address Bus 

PC 

PC +1 

Stack Ptr. 

Stack Ptr. +1 

Stack Ptr. + 2 

PCH, PCL (from 
Stack) 

PCH, PCL + 1 

Data Bus 

OP CODE 

Data 

(Discarded) 

Data 

(Discarded) 

PCL 

PCH 

Data 

(Discarded) 

OP CODE 

A-12 

R/W 
1 

1 

bh 

Comments 

Fetch OP CODE 

Fetch low order byte of 

Jump Address 

Fetch high order byte of 

Jump Address 

Next Instruction 

Comments 

Fetch OP CODE 

Fetch low order byte of 

Indirect Address 

Fetch high order byte of 

Indirect Address 

Fetch low order byte of 

Jump Address 

Fetch high order byte of 
Jump Address 

Next Instruction 

Comments 

Fetch OP CODE 

Pull PCL from Stack 

Pull PCH from Stack 

Next Instruction 



A. 5.8. Branch Operation--BCC, BCS, BEQ, BMI, BNE, BPL, BVC, BVS (2, 3, or 4 
cycles) 

To Address Bus 

TO PC 

TL PC + 1 

T2* PC +2 + 

offset (w/o 
carry) 

T3** PC + 2 + 

offset (with 

carry) 

Data Bus 

OP CODE 

offset 

OP CODE 

OP CODE 

*Skip if branch not taken 

R/W 
1 

bt 

Comments 

Fetch OP CODE 

Fetch Branch Offset 

Offset Added to Program eae we 

Counter 

Carry Added 

**Skip if branch not taken; skip if branch operation doesn't cross page 
boundary. 
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